Кратко неуправляемая и управляемая ядерная реакция. Ядерные технологии

Из четырёх основных источников ядерной энергии в настоящее время удалось довести до промышленной реализации только два: энергия радиоактивного распада утилизируется в источниках тока, а цепная реакция деления - в атомных реакторах. Третий источник ядерной энергии - аннигиляция элементарных частиц пока не вышел из области фантастики. Четвертый же источник - управляемый термоядерный синтез, УТС, находится на повестке дня. Этот источник по своему потенциалу хотя и меньше третьего, но существенно превышает второй.

Термоядерный синтез в лабораторных условиях осуществить достаточно просто, но добиться воспроизводства энергии до сих пор не удалось. Однако работы в этом направлении ведутся, отрабатываются и радиохимические методики, в первую очередь - технологии получения тритиевого топлива для установок УТС.

В данной главе рассмотрены некоторые радиохимические аспекты термоядерного синтеза и обсуждены перспективы использования установок для УТС в атомной энергетике.

Управляемый термоядерный синтез - реакция слияния лёгких атомных ядер в более тяжёлые ядра, происходящая при сверхвысокой температуре и сопровождающаяся выделением огромных количеств энергии. В отличие от взрывного термоядерного синтеза (используемого в водородной бомбе) носит управляемый характер. В основных ядерных реакциях, которые планируется использовать в целях осуществления управляемого термоядерного синтеза, будут применяться -Н и 3 Н, а в более отдалённой перспективе 3 Не и “В.

Надежды на управляемый термоядерный синтез связаны с двумя обстоятельствами: i) полагают, что звезды существует за счёт стационарной термоядерной реакции, и 2) неконтролируемый термоядерный процесс удалось довольно просто реализовать во взрыве водородной бомбы. Кажется, нет никаких принципиальных препятствий для поддержания управляемой реакции ядерного синтеза. Однако интенсивные попытки реализовать в лабораторных условиях УТС с получением энергетического выигрыша окончились полным провалом.

Тем не менее, сейчас УТС рассматривается как важное технологическое решение, направленное на замену ископаемого топлива в производстве энергии. Всемирная потребность в энергии требующая увеличения производства электроэнергии и исчерпаемость невобновляемого сырья стимулирует поиск новых решений.

В термоядерных реакторах используется энергия, выделяющаяся при слиянии лёгких атомных ядео. Напоимео:

Реакция слияния ядер трития и дейтерия является перспективной для осуществления управляемого термоядерного синтеза, так как ее сечение даже при низких энергиях достаточно велико. Эта реакция обеспечивает удельную теплотворную способность 3,5-ю 11 Дж/г. Основная реакция D+T=n+a имеет наибольшее сечение о т ах =5 барн в резонансе при энергии дейтронов Е пШ х= 0,108 МэВ, по сравнению с реакциями D+D=n+3He a,„ a *=0,i05 барн; Е тах = 1,9 МэВ, D+D=p+T о тах = 0,09 барн; Е тах = 2,0 Мэв, а также с реакцией 3He+D=p+a a m ах=0,7 барн; Еотах= 0,4 МэВ. В последней реакции выделяется 18,4 МэВ. В реакции (3) сумма энергий п+а равна 17,6 МэВ, энергия образующихся нейтронов?„=14,1 МэВ; а энергия возникших а-частиц 3,5 МэВ. Если в реакциях T(d,n)a и:} He(d,p)a резонансы довольно узкие, то в реакциях D(d,n)3He и D(d,p)T имеют место очень широкие резонансы с большими значениями сечений в области от 1 до ю МэВ и линейным ростом от 0,1 МэВ до 1 МэВ.

Замечание. Проблемы легко зажигаемого DT топлива заключаются в том, что тритий не встречается в природе и его надо получать из лития в бридерном бланкете термоядерного реактора; тритий радиоактивен (Ti/ 2 =12,6 лет), в системе DT - реактора содержится от ю до юо кг трития; 8о% энергии в реакции DT выделяется с 14-МэВ-ными нейтронами, которые наводят искусственную радиоактивность в конструкциях реактора и производят радиационные разрушения.

На рис. 1 представлены энергетические зависимости сечений реакций (1 - з). Графики для сечений реакций (1) и (2) практически одинаковые - при росте энергии сечение возрастает и при больших энергиях вероятность реакции стремится к постоянному значению. Сечение реакции (3) сначала возрастает, достигает максимума ю барн при энергиях порядка 90 МэВ, а затем с ростом энергии уменьшается.

Рис. 1. Сечения некоторых термоядерных реакций как функция энергии частиц в системе центра масс: 1 - ядерная реакция (3); 2 - реакции (1) и (2).

Вследствие большого сечения рассеяния при бомбардировке ядер трития ускоренными дейтронами энергетический баланс процесса термоядерного синтеза по D - Т реакции может быть отрицательным, т.к. на ускорение дейтронов затрачивается больше энергии, чем выделяется при синтезе. Положительный энергетический баланс возможен, если бомбардирующие частицы после упругого столкновения будут способны вновь участвовать в реакции. Для преодоления электрического отталкивания ядра должны обладать большой кинетической энергией. Эти условия могут быть созданы в высокотемпературной плазме, в которой атомы или молекулы находятся в полностью ионизированном состоянии. Например, D-T - реакция начинает протекать только при температурах выше ю 8 К. Лишь при таких температурах выделяется больше энергии на единицу объёма и в единицу" времени, чем затрачивается. Поскольку на одну реакцию синтеза D-Т приходится ~Ю5 обычных столкновений ядер, проблема УТС состоит в решении двух задач: нагрева вещества до необходимых температур и его удержания на время, достаточное для «сжигания» заметной части термоядерного топлива.

Считается, что управляемый термоядерный синтез может быть реализован при выполнении критерия Лоусона (лт>10‘4 с см-з, где п - плотность высокотемпературной плазмы, т - время удержания её в системе).

При выполнении этого критерия энергия, выделяющаяся при УТС, превышает энергию, вводимую в систему.

Плазму необходимо удерживать внутри заданного объёма, т. к. в свободном пространстве плазма моментально расширяется. Вследствие высоких температур плазму нельзя поместить в резервуар из какого-либо


материала. Для удержания плазмы приходится использовать магнитное поле высокой напряженности, которое создают с помощью сверхпроводящих магнитов.

Рис. 2. Принципиальная схема токамака.

Если не ставить целью получения энергетического выигрыша, то в лабораторных условиях УТС осуществить достаточно просто. Для этого достаточно опустить в канал любого медленного реактора, работающего на реакции деления урана, ампулу с дейтеридом лития (можно использовать литий с природным изотопным составом (7% 6 Li), но лучше, если он обогащён стабильным изотопом 6 Li). Под действием тепловых нейтронов идёт следующая ядерная реакция:

В результате этой реакции, возникают «горячие» атомы трития. Энергии атома отдачи трития (~з МэВ) достаточно для протекания реакции взаимодействия трития с находящимся в LiD дейтерием:

Для энергетических целей этот метод не годится: затраты энергии на процесс превышают выделяющуюся энергию. Поэтому" приходится искать друтие варианты осуществления УТС, варианты, обеспечивающие большой энергетический выигрыш.

УТС с энергетическим выигрышем пытаются реализовать или в квазистационарных (т>1 с, тг >юи см "О, или в импульсных системах (t*io -8 с, п>ю 22 см*з). В первых (токамак, стелларатор, зеркальная ловутпка и т.п.) удержание и термоизоляция плазмы осуществляются в магнитных полях различной конфигурации. В импульсных системах плазма создаётся при облучении твёрдой мишени (крупинки смеси дейтерия и трития) сфокусированным излучением мощного лазера или электронными пучками: при попадании в фокус пучка малых твёрдотельных мишеней происходит последовательная серия термоядерных микровзрывов.

Среди различных камер для удержания плазмы перспективной является камера с тороидальной конфигурацией. При этом плазму создают внутри тороидальной камеры с помощью безэлектродного кольцевого разряда. В токамаке ток, индуцированный в плазме, является как бы вторичной обмоткой трансформатора. Магнитное поле, удерживая плазму, создаётся как за счёт тока, протекающего через обмотку вокруг камеры, так и за счёт тока, индуцированного в плазме. Для получения устойчивой плазмы используется внешнее продольное магнитное поле.

Термоядерный реактор - устройство для получения энергии за счёт реакций синтеза лёгких атомных ядер, происходящих в плазме при очень высоких температурах (>ю 8 К). Основное требование, которому должен удовлетворять термоядерный реактор, заключается в том, чтобы энерговыделение в результате

термоядерных реакций с избытком компенсировало затраты энергии от внешних источников на поддержание реакции.

Рис. з. Основные компоненты реактора для управляемого термоядерного синтеза.

Термоядерный реактор типа ТО- КАМАК (Тороидальная Камера с Магнитными Катушками) состоит из вакуумной камеры, образующей канал, где циркулирует плазма, магнитов, создающих поле и систем нагрева плазмы. К этому прилагаются вакуумные насосы, постоянно откачивающие газы из канала, система доставки топлива по мере его выгорания и дивертор - система, через которую полученная в результате термоядерной реакции энергия выводится из реактора. Тороидальная плазма находится в вакуумной оболочке. а-Частицы, образующиеся в плазме в результате термоядерного синтеза и находящиеся в ней, повышают её температуру. Нейтроны через стенку вакуумной камеры проникают в зону бланкета, содержащего жидкий литий, или соединение лития, обогащённое по 6 Li. При взаимодействии с литием кинетическая энергия нейтронов превращается в тепло, одновременно генерируется тритий. Бланкет помещён в специальную оболочку, которая защищает магнит от вылетающих нейтронов, у- излучения и потоков тепла.

В установках типа токамак плазму создают внутри тороидальной камеры с помощью безэлектродного кольцевого разряда. С этой целью в плазменном сгустке создают электрический ток, и при этом у него появляется собственное магнитное поле - сгусток плазмы сам становится магнитом. Теперь с помощью внешнего магнитного поля определенной конфигурации можно подвесить плазменное облако в центре камеры, не позволяя ему соприкасаться со стенками.

Дивертор - совокупность устройств (специальные полоидальные магнитные катушки; контактирующие с плазмой панели - нейтрализаторы плазмы), с помощью которых область непосредственного контакта стенки с плазмой максимально удалена от основной горячей плазмы. Служит для отвода тепла из плазмы в виде потока заряженных частиц и для откачки нейтрализованных на диверторных пластинах продуктов реакции: гелия и протия. Очищает плазму от загрязняющих примесей, мешающих протеканию реакции синтеза.

Термоядерный реактор характеризуется коэффициентом усиления мощности, равным отношению тепловой мощности реактора к мощности затрат на её производство. Тепловая мощность реактора складывается:

  • - из мощности, выделяемой при термоядерной реакции в плазме;
  • - из мощности, которая вводится в плазму для поддержания температуры горения термоядерной реакции или стационарного тока в плазме;
  • - из мощности, выделяющейся в бланкете - оболочке, окружающей плазму, в которой утилизуется энергия термоядерных нейтронов и которая служит защитой магнитных катушек от радиационных воздествий. Бланкет термоядерного реактора - одна из основных частей термоядерного реактора, специальная оболочка, окружающая плазму, в которой происходят термоядерные реакции и которая служит для утилизации энергии термоядерных нейтронов.

Бланкет со всех сторон охватывает кольцо плазмы, и родившиеся при D-Т синтезе основные носители энергии - 14-МэВ-ные нейтроны - отдают её бланкет}", нагревая его. В бланкете находятся теплообменники, по которым пропускают воду. При работе токамака в составе электростанции пар вращает паровую турбину, а она - ротор генератора.

Основная задача бланкета - съём энергии, трансформация её в тепло и передача его на электрогенераторные системы, а также защита операторов и окружающей среды от ионизирующего излучения, создаваемого термоядерным реактором. За бланкетом в термоядерном реакторе располагается слой радиационной защиты, функции которого заключаются в дальнейшем ослаблении потока нейтронов и образующихся при реакциях с веществом у-квантов для обеспечения работоспособности электромагнитной системы. Затем следует биологическая защита, за которой может работать персонал станции.

«Активный» бланкет - бридер, предназначен для наработки одного из компонентов термоядерного топлива. В реакторах, расходующих тритий, в бланкет включают бридерные материалы (соединения лития), призванные обеспечить эффективную наработку трития.

При работе термоядерного реактора на дейтерий-тритиевом топливе необходимо пополнять количество топлива (D+T) в реакторе и удалять 4Не из плазмы. В результате реакций в плазме происходит выгорание трития, а основная часть энергии синтеза передаётся нейтронам, для которых плазма прозрачна. Это приводит к необходимости размещения между плазмой и электромагнитной системой специальной зоны, в которой воспроизводится выгорающий тритий и происходит поглощение основной части энергий нейтронов. Такая зона и называется бридерным бланкетом. В нём воспроизводится сгоревший в плазме тритий.

Тритий в бланкете можно нарабатывать, облучая литий потоками нейтронов по ядерным реакциям: 6 Li(n,a)T+4,8 МэВ и 7 Li(n,n’a) - 2,4 МэВ.

При наработке трития из лития следует учитывать, что природный литий состоит из двух изотопов: 6 Li (7,52%) и 7 Li (92,48%). Сечение поглощения тепловых нейтронов чистым 6 Li 0=945 барн, а сечение активации по реакции (п,р) - 0,028 барн. У природного лития сечение выведения нейтронов, образующихся при делении урана, равно 1,01 барн, а сечение поглощения тепловых нейтронов о а =70,4 барн.

Спектры энергии у-излучения при радиационном захвате тепловых нейтронов 6 Li характеризуются величинами: средняя энергия у-квантов, испускаемых на один поглощённый нейтрон, в диапазоне энергий 6^-7 МэВ =0,51 МэВ, в диапазоне энергий 7-г8 МэВ - 0,94 МэВ. Полная энергия

В термоядерном реакторе, работающем на D-Т топливе, в результате реакции:

у-излучения на один захват нейтрона равна 1,45 МэВ. У 7 Li сечение поглощения равно 0,047 барн, а сечение активации - 0,033 барна (при энергиях нейтронов выше 2,8 МэВ). Сечение выведения нейтронов деления LiH природного состава =1,34 барн, металлического Li - 1,57 барн, LiF - 2,43 барна.

образуются термоядерные нейтроны, которые, покидая объём плазмы, попадают в область бланкета, содержащую литий и бериллий, где протекают следующие реакции:

Таким образом, термоядерный реактор будет сжигать дейтерий и литий, а в результате реакций будет образовываться инертный газ гелий.

При D-Т реакции в плазме происходит выгорание трития и образуется нейтрон с энергией 14,1 МэВ. В бланкете необходимо, чтобы этот нейтрон породил не менее одного атома трития для покрытия его потерь в плазме. Коэффициент воспроизводства трития к ("количество образующегося в бланкете трития в расчёте на один падающий термоядерный нейтрон) зависит от спектра нейтронов в бланкете, величины поглощения и утечки нейтронов. При юо% покрытии плазмы бланкетом необходимо значение к> 1,05.

Рис. 4. Зависимости сечения ядерных реакций образования трития от энергии нейтронов: 1 - реакция 6 Li(n,t)‘»He, 2 - реакция 7 Li(n,n’,0 4 He.

У ядра 6 Li сечение поглощения тепловых нейтронов с образованием трития очень велико (953 барн при 0,025 эВ). При низких энергиях сечение поглощения нейтронов в Li идёт по закону (l/u) и в случае природного лития достигает значения 71 барн для тепловых нейтронов. У 7 Li сечение взаимодействия с нейтронами равно всего 0,045 барн. Поэтому для повышения производительности бридера природный литий следует обогащать по изотопу 6 Li. Однако увеличение содержания 6 Li в смеси изотопов мало влияет на коэффициент воспроизводства трития: имеет место возрастание на 5% при увеличении обогащения изотопом 6 Li до 50% в смеси. В реакции 6 Li(n, Т)»Не поглотятся все замедлившиеся нейтроны. Кроме сильного поглощения в тепловой области небольшое поглощение (

Зависимость сечения реакции 6 Li(n,T) 4 He от энергии нейтронов приведена на рис. 7. Как это характерно для многих других ядерных реакций, сечение реакции 6 Li(n,f) 4 He уменьшается по мере увеличения энергии нейтронов (за исключением резонанса при энергии 0,25 МэВ).

Реакция с образованием трития на изотопе?Li идёт на быстрых нейтронах при энергии?„>2.8 МэВ. В этой реакции

производится тритий и нет потери нейтрона.

Ядерная реакция на 6 Li не может дать расширенного воспроизводства трития и только компенсирует выгоревший тритий

Реакция на?1л приводит к появлению одного ядра трития на каждый поглощённый нейтрон и регенерации этого нейтрона, который затем поглощается при замедлении и даёт ещё одно ядро трития.

Замечание. В природном Li коэффициент воспроизводства трития к «2. Для Li, LiFBeF 2 , Li 2 0, LiF, У^РЬвз k= 2,0; 0,95; 1,1; 1,05 и i,6, соответственно. Расплавленная соль LiF (66%) + BeF 2 (34%) носит название флайб (FLiBe ), её использование предпочтительно по условиям безопасности и уменьшения потерь трития.

Поскольку не каждый нейтрон D-T-реакции участвует в образовании атома трития, необходимо размножить первичные нейтроны (14,1 МэВ) с помощью (п, 2н) или (п, зп)-реакции, на элементах, имеющих достаточно большое сечение при взаимодействии быстрых нейтронов, например, на у Ве, Pb, Mo, Nb и многих других материалах с Z> 25. Для бериллия порог (п, 2п) реакции 2,5 МэВ; при 14 МэВ 0=0,45 барн. В результате, в вариантах бланкета с жидким или керамическим литием (LiA10 2) возможно достижение к* 1.1+1.2. В случае окружения камеры реактора урановым бланкетом размножение нейтронов может быть существенно увеличено за счёт реакций деления и (п,2п), (п,зл) реакций.

Замечание 1. Наведённая активность лития при облучении нейтронами практически отсутствует, так как образующийся радиоактивный изотоп 8 Li (cr-излучение с энергией 12,7 МэВ и /?-излучение с энергией ~6 МэВ) обладает весьма малым периодом полураспада - 0,875 с. Низкая активация лития и короткий период полураспада облегчают биологическую защиту установки.

Замечание 2. Активность трития, содержащегося в бланкете термоядерного DT- реактора ~*ю 6 Ки, поэтому использование DT-топлива не исключает теоретической возможности аварии масштаба нескольких процентов от Чернобыльской (выброс составил 510 7 Ки). Выброс трития с образованием Т 2 0 может приводить к радиоактивным осадкам, попаданию трития в грунтовые воды, водоёмы, живые организмы, растения с накоплением, в конечном счёте, в продуктах питания.

Выбор материала и агрегатного состояния бридера представляет собой серьёзную проблему. Материал бридера должен обеспечить высокий процент превращения лития в тритий и лёгкое извлечение последнего для последующей передачи в систему подготовки топлива.

К основные функциям бридерного бланкета относятся: формирование плазменной камеры; производство трития с коэффициентом k>i; превращение кинетической энергии нейтрона в тепло; утилизация тепла, образующегося в бланкете в процессе работы термоядерного реактора; радиационная защита электромагнитной системы; биологическая защита от радиации.

Термоядерный реактор на D-T-топливе в зависимости от материала бланкета может быть «чистым» или гибридным. Бланкет «чистого» термоядерного реактора содержит Li, в нём под действием нейтронов получается тритий и происходит усиление термоядерной реакции с 17,6 МэВ до 22,4

МэВ. В бланкете гибридного («активного») термоядерного реактора не только производится тритий, но и имеются зоны, в которые помещается отвальный 2 з 8 и для получения 2 39Ри. При этом в бланкете выделяется энергия равная 140 МэВ на один нейтрон. Энергетическая эффективность гибридного термоядерного реактора в шесть раз выше, чем чистого. Одновременно достигается лучшее поглощение термоядерных нейтронов, что повышает безопасность установки. Однако наличие делящихся радиоактивных веществ создаёт радиационную обстановку, аналогичную существующей в ядерных реакторах деления.

Рис. 5.

Существуют две концепции чистого бридерного бланкета, основанные на применении жидких тритий-воспроизводящих материалов, или на применении твёрдых литий содержащих материалов. Варианты конструкций бланкетов связаны с типом выбранных теплоносителей (жидкометаллические, жидкосолевые, газовые, органические, вода) и классом возможных конструкционных материалов.

В жидкостном варианте бланкета литий является теплоносителем, а тритий - воспроизводящим материалом. Секция бланкета состоит из первой стенки, бридерной зоны (расплавленная соль лития, рефлектора (сталь или вольфрам) и лёгкой компоненты защиты (например, гидрид титана). Основная особенность литиевого самоохлаждаемого бланкета - отсутствие дополнительного замедлителя и размножителя нейтронов. В бланкете с жидким бридером можно использовать следующие соли: Li 2 BeF 4 (Т пл = 459°), LiBeF 3 {T wx . =380°), FLiNaBe (7^=305-320°). Среди приведённых солей Li 2 BeF 4 обладает наименьшей вязкостью, но наибольшей T wl . Перспек- тина эвтектика Pb-Li и расплав FLiNaBe, который выступает ещё и в качестве самоохладителя. Размножителями нейтронов в таком бридере служат сферические гранулы Be диаметром 2 мм.

В бланкете с твёрдым бридером в качестве бридерного материала используется литийсодержащая керамика, а размножителем нейтронов служит бериллий. В состав такого бланкета входят такие элементы, как первая стенка с коллекторами теплоносителя; зона размножения нейтронов; зона воспроизводства трития; каналы охлаждения зон размножения и воспроизводства трития; железоводная защита; элементы крепления бланкета; магистрали подвода и отвода теплоносителя и газа-носителя трития. Конструкционные материалы - ванадиевые сплавы и сталь ферритного или ферритно-мартенситного класса. Радиационная защита изготовлена из стальных листов. В качестве теплоносителя используется газообразный гелий под давлением юМПа с температурой входа 300 0 , выходная температура теплоносителя 650 0 .

Радиохимическая задача заключается в выделении, очистке и возвращении в топливный цикл трития. При этом важным является выбор функциональных материалов для систем регенерации компонентов топлива (бридерных материалов). Материал размножителя (бридера) должен обеспечить съём энергии термоядерного синтеза, генерацию трития и эффективное его извлечение для последующей очистки и трансформации в реакторное топливо. Для этой цели требуется материал с высокой температурной, радиационной и механической стойкостью. Не менее важны и диффузионные характеристики материала, обеспечивающие высокую подвижность трития и, как следствие, хорошую эффективность извлечения трития из бридерного материала при сравнительно низких температурах.

Рабочими веществами бланкета могут служить: керамика Li 4 Si0 4 (или Li 2 Ti0 3) - воспроизводящий материал и бериллий - размножитель нейтронов. И бридер и бериллий используются в форме слоя монодисперс- ных пэбблов (гранул с формой, близкой к сферической). Диаметры гранул Li 4 Si0 4 и Li 2 Ti0 3 варьируются в диапазонах 0.2-Ю.6 мм и о.8-м мм, соответственно, а гранулы бериллия имеют диаметр 1 мм. Доля эффективного объёма слоя гранул - 63%. Для воспроизводства трития, керамический бридер обогащают изотопом 6 Li. Типичный уровень обогащения по 6 Li: 40% для Li 4 Si0 4 и 70% для Li 2 Ti0 3 .

В настоящее время наиболее перспективным считается метатитанат лития 1л 2 ТЮ 3 из-за сравнительно большой скорости высвобождения трития при сравнительно низких температурах (от 200 до 400 0), радиационной и химической стойкости. Было продемонстрировано, что гранулы из тита- ната лития, обогащённого до 96% 6 Li в условиях интенсивного нейтронного облучения и термических воздействий, позволяют в течение двух лет генерировать литий практически с постоянной скоростью. Извлечение трития из облучённой нейтронами керамики проводят программированным нагревом бридерного материала в режиме непрерывной откачки.

Предполагается, что в ядерной индустрии установки термоядерного синтеза могут быть использованы по трём направлениям:

  • - гибридные реакторы, в которых бланкет содержит делящиеся нуклиды (уран, плутоний), деление которых управляется мощным потоком высокоэнергетических (14 МэВ) нейтронов;
  • - инициаторы горения в электроядерных подкритических реакторах;
  • - трансмутация долгоживущих экологически опасных радионуклидов с целью обезвреживания РАО.

Высокая энергия термоядерных нейтронов предоставляет большие возможности выделения энергетических групп нейтронов для сжигания конкретного радионуклида в резонансной области сечений.

Энциклопедичный YouTube

    1 / 5

    ✪ Ядерный Ракетный Двигатель Новейшие Технологии 2016

    ✪ В России собрали первый в мире ядерный космический двигатель.

    ✪ Горизонты атома (26.03.2016): Ядерные технологии безопасности

    ✪ Ядерный реактор вместо сердца?

    ✪ Ядерная энергетика и технологии

    Субтитры

Физика

Атомные ядра состоят из двух типов нуклонов - протонов и нейтронов . Их удерживает вместе так называемое сильное взаимодействие . При этом энергия связи каждого нуклона с другими зависит от общего количества нуклонов в ядре, как показано на графике справа. Из графика видно, что у легких ядер с увеличением количества нуклонов энергия связи растет, а у тяжелых падает. Если добавлять нуклоны в легкие ядра или удалять нуклоны из тяжелых атомов, то эта разница в энергии связи будет выделяться в виде кинетической энергии частиц, высвобождающихся в результате этих действий. Кинетическая энергия (энергия движения) частиц переходит в тепловое движение атомов после соударения частиц с атомами. Таким образом ядерная энергия проявляется в виде нагрева.

Изменение состава ядра называется ядерным превращением или ядерной реакцией . Ядерная реакция с увеличением количества нуклонов в ядре называется термоядерной реакцией или ядерным синтезом . Ядерная реакция с уменьшением количества нуклонов в ядре именуют ядерным распадом или делением ядра .

Деление ядра

Деление ядра может быть самопроизвольным (спонтанным) и вызванным внешним воздействием (индуцированным).

Спонтанное деление

Современная наука считает что все химические элементы тяжелее водорода были синтезированы в результате термоядерных реакций внутри звезд . В зависимости от количества протонов и нейтронов ядро может быть стабильно или проявлять склонность к самопроизвольному делению на несколько частей. После окончания жизни звезд стабильные атомы образовали известный нам мир, а нестабильные постепенно распадались до образования стабильных. На Земле до наших дней в промышленных количествах сохранилось только два таких нестабильных (радиоактивных ) химических элемента - уран и торий . Другие нестабильные элементы получают искусственно в ускорителях или реакторах.

Цепная реакция

Некоторые тяжелые ядра легко присоединяют внешний свободный нейтрон , становятся при этом нестабильными и распадаются, выбрасывая несколько новых свободных нейтронов. В свою очередь эти освободившиеся нейтроны могут попасть в соседние ядра и также вызвать их распад с выходом очередных свободных нейтронов. Такой процесс именуется цепной реакцией . Чтобы цепная реакция произошла, нужно создать специфические условия: сконцентрировать в одном месте достаточно много вещества, способного к цепной реакции. Плотность и объем этого вещества должны быть достаточны чтобы свободные нейтроны не успевали покинуть вещество, взаимодействуя с ядрами с высокой вероятностью. Эту вероятность характеризует коэффициент размножения нейтронов . Когда объем, плотность и конфигурация вещества позволят коэффициенту размножения нейтронов достичь единицы, то начнется самоподдерживающаяся цепная реакция, а массу делящегося вещества назовут критическая масса . Естественно, каждый распад в этой цепочке приводит к выделению энергии.

Люди научились осуществлять цепную реакцию в специальных конструкциях. В зависимости от требуемых темпов цепной реакции и её тепловыделения эти конструкции называются ядерным оружием или ядерными реакторами . В ядерном оружии осуществляется лавинообразная неуправляемая цепная реакция с максимально достижимым коэффициентом размножения нейтронов чтобы достичь максимального энерговыделения прежде чем наступит тепловое разрушение конструкции. В ядерных реакторах стараются достичь стабильного нейтронного потока и тепловыделения, чтобы реактор выполнял свои задачи и не разрушился от избыточных тепловых нагрузок. Такой процесс называют управляемой цепной реакцией.

Управляемая цепная реакция

В ядерных реакторах создают условия для управляемой цепной реакции . Как понятно из смысла цепной реакции, ее темпом можно управлять меняя коэффициент размножения нейтронов. Для этого можно менять разнообразные параметры конструкции: плотность делящегося вещества, энергетический спектр нейтронов, вводить вещества-поглотители нейтронов, добавлять нейтроны от внешних источников и т. п.

Однако цепная реакция очень быстрый лавинообразный процесс, надежно управлять им напрямую практически невозможно. Поэтому для управления цепной реакцией огромное значение имеют запаздывающие нейтроны - нейтроны, образующиеся при спонтанном распаде нестабильных изотопов, образовавшихся в результате первичных распадов делящегося материала. Время от первичного распада до запаздывающих нейтронов варьируется от миллисекунд до минут, а доля запаздывающих нейтронов в нейтронном балансе реактора достигает единиц процентов. Такие значения времени уже позволяют регулировать процесс механическими методами. Коэффициент размножения нейтронов с учетом запаздывающих нейтронов называют эффективным коэффициентом размножения нейтронов , а вместо критической массы ввели понятие реактивность ядерного реактора .

На динамику управляемой цепной реакции также влияют другие продукты деления, некоторые из которых могут эффективно поглощать нейтроны (так называемые нейтронные яды). После начала цепной реакции они накапливаются в реакторе, уменьшая эффективный коэффициент размножения нейтронов и реактивность реактора. Через некоторое время наступает баланс накопления и распада таких изотопов и реактор входит в стабильный режим. Если заглушить реактор то нейтронные яды еще долгое время сохраняются в реакторе, усложняя его повторный запуск. Характерное время жизни нейтронных ядов в цепочке распада урана до полусуток. Нейтронные яды мешают ядерным реакторам быстро изменять мощность.

Ядерный синтез

Нейтронный спектр

Распределение энергий нейтронов в нейтронном потоке принято называть спектром нейтронов . Энергия нейтрона определяет схему взаимодействия нейтрона с ядром. Принято выделять несколько диапазонов энергий нейтронов, из которых для ядерных технологий значимыми являются:

  • Тепловые нейтроны. Названы так поскольку находятся в энергетическом равновесии с тепловыми колебаниями атомов и не передают им свою энергию при упругих взаимодействиях.
  • Резонансные нейтроны. Названы так поскольку сечение взаимодействия некоторых изотопов с нейтронами этих энергий имеет ярко выраженные неравномерности.
  • Быстрые нейтроны. Нейтроны этих энергий обычно получаются в результате ядерных реакций.

Мгновенные и запаздывающие нейтроны

Цепная реакция очень быстрый процесс. Время жизни одного поколения нейтронов (то есть среднее время от возникновения свободного нейтрона до его поглощения следующим атомом и рождения следующих свободных нейтронов) много менее микросекунды. Такие нейтроны называют мгновенными . При цепной реакции с коэффициентом размножения 1,1 через 6 мкс количество мгновенных нейтронов и выделяемая энергия вырастут в 10 26 раз. Надежно управлять таким быстрым процессом невозможно. Поэтому для управляемой цепной реакции огромное значение имеют запаздывающие нейтроны . Запаздывающие нейтроны возникают при самопроизвольном распаде осколков деления, оставшихся после первичных ядерных реакций.

Материаловедение

Изотопы

В окружающей природе люди обычно сталкиваются со свойствами веществ, обусловленными структурой электронных оболочек атомов. Например, именно электронные оболочки целиком отвечают за химические свойства атома. Поэтому до ядерной эры наука не разделяла вещества по массе ядра, а только по его электрическому заряду. Однако с появлением ядерных технологий выяснилось что все хорошо известные простые химические элементы имеют множество - иной раз десятки - разновидностей с разным количеством нейтронов в ядре и, соответственно, совершенно различными ядерными свойствами. Эти разновидности стали называть изотопами химических элементов. Большинство встречающихся в природе химических элементов является смесями нескольких разных изотопов.

Подавляющее большинство известных изотопов являются нестабильными и в природе не встречаются. Их получают искусственно для изучения либо использования в ядерных технологиях. Разделение смесей изотопов одного химического элемента, искусственное получение изотопов, изучение свойств этих изотопов - одни из основных задач ядерных технологий.

Делящиеся материалы

Некоторые изотопы нестабильны и распадаются. Однако распад происходит не сразу после синтеза изотопа а спустя некоторое характерное для этого изотопа время, называемое периодом полураспада . Из названия очевидно что это время, за которое распадается половина имевшихся ядер нестабильного изотопа.

В природе нестабильные изотопы почти не встречаются, поскольку даже самые долгоживущие успели полностью распасться за те миллиарды лет что прошли после синтеза окружающих нас веществ в термоядерной топке давно угасшей звезды. Исключений только три: это два изотопа урана (уран-235 и уран-238) и один изотоп тория - торий-232 . Кроме них в природе можно найти следы других нестабильных изотопов, образовавшихся в результате природных ядерных реакций: распада этих трех исключений и воздействия космических лучей на верхние слои атмосферы.

Нестабильные изотопы являются основой практически всех ядерных технологий.

Поддерживающие цепную реакцию

Отдельно выделяют очень важную для ядерных технологий группу нестабильных изотопов, способных к поддержанию ядерной цепной реакции. Чтобы поддерживать цепную реакцию изотоп должен хорошо поглощать нейтроны с последующим распадом, в результате которого образуется несколько новых свободных нейтронов. Человечеству невероятно повезло, что среди сохранившихся в природе в промышленных количествах нестабильных изотопов оказался один, поддерживающий цепную реакцию: уран-235 .

Конструкционные материалы

История

Открытие

В начале ХХ века огромный вклад в изучение ионизирующих излучений и структуры атомов внес Резерфорд . В Эрнест Уолтон и Джон Кокрофт смогли впервые расщепить ядро атома.

Оружейные ядерные программы

В конце 30-х годов ХХ века физики осознали возможность создания мощного оружия на основе цепной ядерной реакции. Это привело к высокому интересу государства к ядерным технологиям. Первая масштабная государственная атомная программа появилась в Германии в 1939 году (см. немецкая ядерная программа). Однако война осложнила снабжение программы и после разгрома Германии в 1945 году программа была закрыта без значимых результатов. В 1943 году в США началась масштабная программа под кодовым названием Манхэттенский проект . В 1945 году в рамках этой программы была создана и испытана первая в мире ядерная бомба. Ядерные исследования в СССР велись с 20-х годов. В 1940 году прорабатывается первая советская теоретическая конструкция ядерной бомбы . Ядерные разработки в СССР становятся секретными с 1941 года. Первая советская ядерная бомба испытана в 1949 году.

Основной вклад в энерговыделение первых ядерных боеприпасов вносила реакция деления. Тем не менее реакция синтеза находила применение в качестве дополнительного источника нейтронов для увеличения количества прореагировавшего делящегося вещества. В 1952 году в США и 1953 в СССР были испытаны конструкции, в которых бо́льшая часть энерговыделения создавалась реакцией синтеза. Такое оружие назвали термоядерным. В термоядерном боеприпасе реакция деления служит для «поджига» термоядерной реакции, не внося существенного вклада в общую энергетику оружия.

Ядерная энергетика

Первые ядерные реакторы были либо экспериментальными либо оружейными, то есть предназначенными для наработки оружейного плутония из урана. Создаваемое ими тепло сбрасывали в окружающую среду. Низкие рабочие мощности и малые разницы температур затрудняли эффективное использование такого низкопотенциального тепла для работы традиционных тепловых машин. В 1951 году было первое использование этого тепла для электрогенерации: в США в контур охлаждения экспериментального реактора установили паровую турбину с электрогенератором. В 1954 году в СССР построили первую атомную электростанцию, изначально спроектированную для целей электроэнергетики.

Технологии

Ядерное оружие

Существует много способов нанести вред человеку с помощью ядерных технологий. Но на вооружение государств приняли только ядерное оружие взрывного действия на основе цепной реакции. Принцип работы такого оружия прост: нужно максимально увеличить коэффициент размножения нейтронов в цепной реакции, чтобы как можно больше ядер вступило в реакцию и выделило энергию до того как конструкция оружия будет разрушена выделяющимся теплом. Для этого надо либо увеличить массу делящегося вещества либо увеличить его плотность. Причем сделать это надо максимально быстро, иначе медленный рост энерговыделения расплавит и испарит конструкцию без взрыва. Соответственно было разработано два подхода к построению ядерного взрывного устройства:

  • Схема с увеличением массы, так называемая пушечная схема. Два подкритических куска делящегося вещества устанавливались в стволе артиллерийского орудия. Один кусок закреплялся в конце ствола, другой выступал в роли снаряда. Выстрел сближал куски, начиналась цепная реакция и происходило взрывное энерговыделение. Достижимые скорости сближения в такой схеме ограничивались парой км/сек.
  • Схема с увеличением плотности, так называемая имплозивная схема. Основана на особенностях металлургии искусственного изотопа плутония . Плутоний способен образовывать стабильные аллотропные модификации , различающиеся плотностью. Ударная волна, проходя по объему металла, способна перевести плутоний из неустойчивой модификации низкой плотности в высокоплотную. Эта особенность позволила переводить плутоний из низкоплотного подкритичного состояния в сверхкритичное со скоростью распространения ударной волны в металле. Для создания ударной волны применили обычную химическую взрывчатку, расположив её вокруг плутониевой сборки так, чтобы взрыв обжимал шарообразную сборку со всех сторон.

Обе схемы были созданы и испытаны практически одновременно, но имплозивная схема оказалась эффективнее и компактнее.

Нейтронные источники

Другим ограничителем энерговыделения является скорость роста количества нейтронов в цепной реакции. В подкритическом делящемся материале идет самопроизвольный распад атомов. Нейтроны этих распадов становятся первыми в лавинообразной цепной реакции. Однако для максимального энерговыделения выгодно сначала убрать все нейтроны из вещества, потом перевести его в сверхкритическое состояние и только потом ввести в вещество запальные нейтроны в максимальном количестве. Чтобы добиться этого выбирают делящееся вещество с минимальным загрязнением свободными нейтронами от самопроизвольных распадов, а в момент перевода в сверхкритическое состояние добавляют нейтронов из внешних импульсных источников нейтронов.

Источники дополнительных нейтронов строятся на разных физических принципах. Первоначально распространение получили взрывные источники, основанные на перемешивании двух веществ. Радиоактивный изотоп, обычно полоний-210 , перемешивался с изотопом бериллия . Альфа излучение полония вызывало ядерную реакцию бериллия с выходом нейтронов. Впоследствии их заменили на источники на базе миниатюрных ускорителей, на мишени которых осуществлялась реакция ядерного синтеза с нейтронным выходом.

Помимо запальных источников нейтронов оказалось выгодно вводить в схему дополнительные источники, срабатывающие от начавшейся цепной реакции. Такие источники строились на основе реакций синтеза легких элементов. Ампулы с веществами типа дейтерида лития-6 устанавливались в полость в центре плутониевой ядерной сборки. Потоки нейтронов и гамма-лучей от развивающейся цепной реакции разогревали ампулу до температур термоядерного синтеза, а плазма взрыва обжимала ампулу, помогая температуре давлением. Начиналась реакция синтеза, поставлявшая дополнительные нейтроны для цепной реакции деления.

Термоядерное оружие

Источники нейтронов на основе реакции синтеза сами были значительным источником тепла. Однако размеры полости в центре плутониевой сборки не могли вместить много вещества для синтеза, а при размещении вне плутониевого делящегося ядра не удалось бы получить требуемых для синтеза условий по температуре и давлению. Необходимо было окружить вещество для синтеза дополнительной оболочкой, которая, воспринимая энергию ядерного взрыва, обеспечило бы ударное обжатие. Сделали большую ампулу из урана-235 и установили ее рядом с ядерным зарядом. Мощные потоки нейтронов от цепной реакции вызовут лавину делений атомов урана ампулы. Несмотря на подкритичность конструкции урановой ампулы суммарное действие гамма лучей и нейтронов от цепной реакции запального ядерного взрыва и собственных делений ядер ампулы позволит создать внутри ампулы условия для синтеза. Теперь размеры ампулы с веществом для синтеза оказались практически неограничены и вклад энерговыделения от ядерного синтеза многократно превысил энерговыделение запального ядерного взрыва. Такое оружие стали называть термоядерным.

.
  • На основе управляемой цепной реакции деления тяжелых ядер. В настоящее время это единственная ядерная технология, обеспечивающая экономически оправданную промышленную генерацию электроэнергии на атомных электростанциях .
  • На основе реакции синтеза легких ядер. Несмотря на хорошо известную физику процесса построить экономически оправданную электростанцию пока не удалось.
  • Атомная электростанция

    Сердцем атомной электростанции является ядерный реактор - устройство, в котором осуществляется управляемая цепная реакция деления тяжелых ядер. Энергия ядерных реакций выделяется в виде кинетической энергии осколков деления и превращается в тепло за счет упругих соударений этих осколков с другими атомами.

    Топливный цикл

    Известен лишь один природный изотоп, способный к цепной реакции - уран-235 . Его промышленные запасы невелики. Поэтому уже сегодня инженеры ищут пути наработки дешевых искусственных изотопов, поддерживающих цепную реакцию. Наиболее перспективен плутоний, нарабатывающийся из распространенного изотопа уран-238 путём захвата нейтрона без деления. Его несложно нарабатывать в тех же энергетических реакторах как побочный продукт. При определенных условиях возможна ситуация, когда наработка искусственного делящегося материала полностью покрывает потребности имеющихся АЭС. В этом случае говорят о замкнутом топливном цикле , не требующем поступления делящегося материала из природного источника.

    Ядерные отходы

    Отработанное ядерное топливо (ОЯТ) и конструкционные материалы реактора с наведенной радиоактивностью являются мощными источниками опасных ионизирующих излучений. Технологии работы с ними интенсивно совершенствуются в направлении минимизации количества захораниваемых отходов и уменьшения срока их опасности. ОЯТ также является источником ценных радиоактивных изотопов для промышленности и медицины. Переработка ОЯТ необходимый этап замыкания топливного цикла.

    Ядерная безопасность

    Использование в медицине

    В медицине обычно используются различные нестабильные элементы для проведения исследований или терапии.

    ​Ученые Принстонской лаборатории физики плазмы предложили идею самого долговечного устройства для ядерного синтеза, которое сможет работать более 60 лет. В данный момент это трудноосуществимая задача: ученые бьются над тем, чтобы заставить термоядерный реактор проработать в течение нескольких минут - а тут годы. Несмотря на сложность, строительство термоядерного реактора - одна из самых перспективных задач науки, которая может принести огромную пользу. Рассказываем, что нужно знать о термоядерном синтезе.

    1. Что такое термоядерный синтез?

    Не пугайтесь этого громоздкого словосочетания, на деле все довольно просто. Термоядерный синтез - это разновидность ядерной реакции.

    В ходе ядерной реакции ядро атома взаимодействует либо с элементарной частицей, либо с ядром другого атома, за счет чего состав и строение ядра изменяются. Тяжелое атомное ядро может распасться на два-три более легких - это реакция деления. Существует также реакция синтеза: это когда два легких атомных ядра сливаются в одно тяжелое.

    В отличие от ядерного деления, которое может проходить как самопроизвольно, так и вынужденно, ядерный синтез невозможен без подвода внешней энергии. Как известно, притягиваются противоположности, но вот атомные ядра заряжены положительно - поэтому они отталкиваются друг от друга. Эта ситуация называется кулоновским барьером. Чтобы преодолеть отталкивание, необходимо разогнать эти частицы до сумасшедших скоростей. Это можно осуществить при очень высокой температуре - порядка нескольких миллионов кельвинов. Именно такие реакции и называются термоядерными.

    2. Зачем нам термоядерный синтез?

    В ходе ядерных и термоядерных реакций выделяется огромное количество энергии, которую можно использовать в различных целях - можно создать мощнейшее оружие, а можно преобразовать ядерную энергию в электричество и снабдить им весь мир. Энергия распада ядра давно используется на атомных электростанциях. Но термоядерная энергетика выглядит перспективнее. При термоядерной реакции на каждый нуклон (так называются составляющие ядра, протоны и нейтроны) выделяется намного больше энергии, чем при ядерной реакции. К примеру, при делении ядра урана на один нуклон приходится 0,9 МэВ (мегаэлектронвольт), а при синтезе ядра гелия из ядер водорода выделяется энергия, равная 6 МэВ. Поэтому ученые учатся проводить термоядерные реакции.

    Исследования термоядерного синтеза и строительство реакторов позволяют расширить высокотехнологичное производство, которое полезно и в других сферах науки и хай-тека.

    3. Какие бывают термоядерные реакции?

    Термоядерные реакции делят на самоподдерживающиеся, неуправляемые (используются в водородных бомбах) и управляемые (подходят для мирных целей).

    Самоподдерживающиеся реакции проходят в недрах звезд. Однако на Земле нет условий для проведения таких реакций.

    Неуправляемый, или взрывной термоядерный синтез люди проводят давно. В 1952 году в ходе операции "Иви Майк" американцы взорвали первое в мире термоядерное взрывное устройство, которое не имело практической ценности в качестве оружия. А в октябре 1961 года прошли испытания первой в мире термоядерной (водородной) бомбы ("Царь-бомба", "Кузькина мать"), разработанной советскими учеными под руководством Игоря Курчатова. Это было самое мощное взрывное устройство за всю историю человечества: полная энергия взрыва, по разным данным, составляла от 57 до 58,6 мегатонн в тротиловом эквиваленте. Чтобы взорвать водородную бомбу, необходимо сначала в ходе обычного ядерного взрыва получить высокую температуру - лишь тогда атомные ядра начнут реагировать.

    Мощность взрыва при неуправляемой ядерной реакции очень велика, кроме того, высока доля радиоактивного загрязнения. Поэтому чтобы использовать термоядерную энергию в мирных целях, необходимо научиться ею управлять.

    4. Что нужно для управляемой термоядерной реакции?

    Удержать плазму!

    Непонятно? Сейчас поясним.

    Во-первых, атомные ядра. В ядерной энергетике используются изотопы - атомы, отличающиеся друг от друга количеством нейтронов и, соответственно, атомной массой. Изотоп водорода дейтерий (D) добывают из воды. Сверхтяжелый водород или тритий (Т) - радиоактивный изотоп водорода, который является побочным продуктом реакций распада, проводимых на обычных ядерных реакторах. Также в термоядерных реакциях используется легкий изотоп водорода - протий: это единственный стабильный элемент, не имеющий нейтронов в ядре. Гелий-3 содержится на Земле в ничтожно малых количествах, зато его очень много в лунном грунте (реголите): в 80-х гг НАСА разрабатывало план гипотетических установок по переработке реголита и выделению ценного изотопа. Зато на нашей планете широко распространен другой изотоп - бор-11. 80% бора на Земле - это необходимый ядерщикам изотоп.

    Во-вторых, очень высокая температура. Вещество, участвующее в термоядерной реакции, должно представлять собой практически полностью ионизированную плазму - это газ, в котором отдельно плавают свободные электроны и ионы различных зарядов. Чтобы превратить вещество в плазму, необходима температура 10 7 –10 8 К - это сотни миллионов градусов Цельсия! Такие сверхвысокие температуры можно получить путем создания в плазме электрических разрядов большой мощности.

    Однако просто нагреть необходимые химические элементы нельзя. Любой реактор моментально испарится при таких температурах. Здесь требуется совершенно иной подход. На сегодняшний день удается удерживать плазму на ограниченной территории с помощью сверхмощных электрических магнитов. Но полноценно использовать получаемую в результате термоядерной реакции энергию пока не удается: даже под воздействием магнитного поля плазма растекается в пространстве.

    5. Какие реакции наиболее перспективны?

    В основных ядерных реакциях, которые планируется использовать в целях осуществления управляемого термоядерного синтеза, будут применяться дейтерий (2H) и тритий (3H), а в более отдалённой перспективе гелий-3 (3He) и бор-11 (11B).

    Вот как выглядят самые интересные реакции.

    1) 2 D+ 3 T -> 4 He (3.5 MeV) + n (14.1 MeV) - реакция дейтерий-тритий.

    2) 2 D+ 2 D -> 3 T (1.01 MeV) + p (3.02 MeV) 50%

    2 D+ 2 D -> 3 He (0.82 MeV) + n (2.45 MeV) 50% - это так называемое монотопливо из дейтерия.

    Реакции 1 и 2 чреваты нейтронным радиоактивным загрязнением. Поэтому наиболее перспективны "безнейтронные" реакции.

    3) 2 D+ 3 He -> 4 He (3.6 MeV) + p (14.7 MeV) - дейтерий реагирует с гелием-3. Проблема в том, что гелий-3 чрезвычайно редок. Однако безнейтронный выход делает эту реакцию перспективной.

    4) p+ 11 B -> 3 4 He + 8.7 MeV - бор-11 реагирует с протием, в результате получаются альфа-частицы, которые можно поглотить алюминиевой фольгой.

    6. Где провести такую реакцию?

    Естественным термоядерным реактором является звезда. В ней плазма удерживается под действием гравитации, а излучение поглощается - таким образом, ядро не остывает.

    На Земле же термоядерные реакции можно провести лишь в специальных установках.

    Импульсные системы. В таких системах дейтерий и тритий облучают сверхмощными лазерными лучи или пучками электронов/ионов. Такое облучение вызывает последовательность термоядерных микровзрывов. Однако такие системы невыгодно использовать в промышленных масштабах: на разгон атомов тратится намного больше энергии, чем получается в результате синтеза, так как не все разгоняемые атомы вступают в реакцию. Поэтому многие страны строят квазистационарные системы.

    Квазистационарные системы. В таких реакторах плазма удерживается с помощью магнитного поля при низком давлении и высокой температуре. Существует три типа реакторов, основанных на различных конфигурациях магнитного поля. Это токамаки, стеллараторы (торсатроны) и зеркальные ловушки.

    Токамак расшифровывается как "тороидальная камера с магнитными катушками". Это камера в виде "бублика" (тора), на которую намотаны катушки. Главной особенностью токамака является использование переменного электрического тока, который протекает через плазму, нагревает ее и, создавая вокруг себя магнитное поле, удерживает ее.

    В стеллараторе (торсатроне) магнитное поле полностью удерживается с помощью магнитных катушек и, в отличие от токамака, может работать постоянно.

    В зеркальных (открытых) ловушках используется принцип отражения. Камера с двух сторон закрыта магнитными "пробками", которые отражают плазму, удерживая ее в реакторе.

    Долгое время зеркальные ловушки и токамаки боролись за первенство. Изначально концепция ловушки казалась более простой и потому более дешевой. В начале 60-х годов открытые ловушки обильно финансировались, однако нестабильность плазмы и неудачные попытки удержать ее магнитным полем заставляли усложнять эти установки - простые на вид конструкции превратились в адские машины, и добиться стабильного результата не выходило. Поэтому в 80-х годах на первый план вышли токамаки. В 1984 году был запущен европейский токамак JET, стоимость которого составила всего 180 млн долларов и параметры которого позволяли провести термоядерную реакцию. В СССР и Франции проектировали сверхпроводящие токамаки, которые почти не тратили энергию на работу магнитной системы.

    7. Кто сейчас учится проводить термоядерные реакции?

    Многие страны строят свои термоядерные реакторы. Свои экспериментальные реакторы есть в Казахстане, Китае, США и Японии. Курчатовский институт работает над реактором IGNITOR. Германия запустила термоядерный реактор-стелларатор Wendelstein 7-X.

    Наиболее известен международный проект токамака ИТЭР (ITER, Международный экспериментальный термоядерный реактор) в исследовательском центре Кадараш (Франция). Его строительство предполагалось закончить в 2016 году, однако размеры необходимого финансового обеспечения выросли, а сроки экспериментов сдвинулись на 2025 год. В деятельности ИТЭР участвует Евросоюз, США, Китай, Индия, Япония, Южная Корея и Россия . Основную долю в финансировании играет ЕС (45%), остальные участники поставляют высокотехнологичное оборудование. В частности, Россия производит сверхпроводниковые материалы и кабели, радиолампы для нагрева плазмы (гиротроны) и предохранители для сверхпроводящих катушек, а также компоненты для сложнейшей детали реактора - первой стенки, которая должна выдержать электромагнитные силы, нейтронное излучение и излучение плазмы.

    8. Почему мы до сих пор не пользуемся термоядерными реакторами?

    Современные установки токамак - не термоядерные реакторы, а исследовательские установки, в которых возможно лишь на некоторое время существование и сохранение плазмы. Дело в том, что ученые пока не научились удерживать плазму в реакторе на длительный срок.

    На данный момент одним из самых больших достижений в области ядерного синтеза считается успех немецких ученых, которым удалось нагреть водородный газ до 80 миллионов градусов по Цельсию и поддерживать облако плазмы водорода в течение четверти секунды. А в Китае водородную плазму нагрели до 49.999 миллионов градусов и продержали ее 102 секунды. Российским ученым из (Институт ядерной физики имени Г. И. Будкера, Новосибирск) удалось добиться стабильного нагрева плазмы до десяти миллионов градусов Цельсия. Однако недавно американцы предложили способ удержания плазмы в течение 60 лет - и это внушает оптимизм.

    Кроме того, ведутся споры относительно рентабельности термоядерного синтеза в промышленности. Неизвестно, покроют ли выгоды от производства электроэнергии затраты на термоядерный синтез. Предлагается экспериментировать с реакциями (например, отказаться от традиционной реакции дейтерий-тритий или монотоплива в пользу других реакций), конструкционными материалами - а то и отказаться от идеи промышленного термоядерного синтеза, используя лишь его для отдельных реакций в реакциях деления. Однако ученые все равно продолжают эксперименты.

    9. Безопасны ли термоядерные реакторы?

    Относительно. Тритий, который используется в термоядерных реакциях, радиоактивен. Кроме того, нейроны, выделяющиеся в результате синтеза, облучают конструкцию реактора. Сами элементы реактора покрываются радиоактивной пылью из-за воздействия плазмы.

    Тем не менее, термоядерный реактор намного безопасней ядерного реактора в радиационном отношении. Радиоактивных веществ в реакторе относительно мало. Кроме того, сама конструкция реактора предполагает отсутствие "дыр", через которые может просочиться радиация. Вакуумная камера реактора должна быть герметичной, иначе реактор просто не сможет работать. При строительстве термоядерных реакторов применяются испытанные ядерной энергетикой материалы, а в помещениях поддерживается пониженное давление.

  • Когда появятся термоядерные электростанции?

    Ученые чаще всего говорят, что-то вроде “через 20 лет мы решим все принципиальные вопросы”. Инженеры из атомной индустрии говорят про вторую половину 21 века. Политики рассуждают про море чистой энергии за копейки, не утруждая себя датами.

  • Как ученые ищут темную материю в недрах Земли

    Сотни миллионов лет назад минералы под земной поверхностью могли сохранять в себе следы загадочного вещества. Осталось только до них добраться. ​Больше двух десятков подземных лабораторий, разбросанных по всему миру, заняты поиском темной материи.

  • Как сибирские ученые помогли человеку улететь к звездам

    ​12 апреля 1961 года Юрий Гагарин совершил первый полет в космос - добродушная улыбка летчика и его бодрое "Поехали!" стали триумфом советской космонавтики. Чтобы этот полет состоялся, ученые по всей стране ломали головы, как же сделать такую ракету, которая бы выдержала все опасности неизведанного космоса, - здесь не обошлось без идей ученых Сибирского отделения Академии наук.

  • Ядерный реактор работает слаженно и четко. Иначе, как известно, будет беда. Но что там творится внутри? Попытаемся сформулировать принцип работы ядерного (атомного) реактора кратко, четко, с остановками.

    По сути, там творится тот же процесс, что и при ядерном взрыве. Только вот взрыв происходит очень быстро, а в реакторе все это растягивается на длительное время. В итоге все остается целым и невредимым, а мы получаем энергию. Не столько, чтобы все вокруг сразу разнесло, но вполне достаточную для того, чтобы обеспечить электричеством город.

    Прежде чем понять, как идет управляемая ядерная реакция, нужно узнать, что такое ядерная реакция вообще.

    Ядерная реакция – это процесс превращения (деления) атомных ядер при взаимодействии их с элементарными частицами и гамма-квантами.

    Ядерные реакции могут проходить как с поглощением, так и с выделением энергии. В реакторе используются вторые реакции.

    Ядерный реактор – это устройство, назначением которого является поддержание контролируемой ядерной реакции с выделением энергии.

    Часто ядерный реактор называют еще и атомным. Отметим, что принципиальной разницы тут нет, но с точки зрения науки правильнее использовать слово "ядерный". Сейчас существует множество типов ядерных реакторов. Это огромные промышленные реакторы, предназначенные для выработки энергии на электростанциях, атомные реакторы подводных лодок, малые экспериментальные реакторы, используемые в научных опытах. Существуют даже реакторы, применяемые для опреснения морской воды.

    История создания атомного реактора

    Первый ядерный реактор был запущен в не таком уж и далеком 1942 году. Произошло это в США под руководством Ферми. Этот реактор назвали "Чикагской поленницей".

    В 1946 году заработал первый советский реактор, запущенный под руководством Курчатова. Корпус этого реактора представлял собой шар семи метров в диаметре. Первые реакторы не имели системы охлаждения, и мощность их была минимальной. К слову, советский реактор имел среднюю мощность 20 Ватт, а американский – всего 1 Ватт. Для сравнения: средняя мощность современных энергетических реакторов составляет 5 Гигаватт. Менее чем через десять лет после запуска первого реактора была открыта первая в мире промышленная атомная электростанция в городе Обнинске.

    Принцип работы ядерного (атомного) реактора

    У любого ядерного реактора есть несколько частей: активная зона с топливом и замедлителем , отражатель нейтронов , теплоноситель , система управления и защиты . В качестве топлива в реакторах чаще всего используются изотопы урана (235, 238, 233), плутония (239) и тория (232). Активная зона представляет собой котел, через который протекает обычная вода (теплоноситель). Среди других теплоносителей реже используется «тяжелая вода» и жидкий графит. Если говорить про работу АЭС, то ядерный реактор используется для получения тепла. Само электричество вырабатывается тем же методом, что и на других типах электростанций - пар вращает турбину, а энергия движения преобразуется в электрическую энергию.

    Приведем ниже схему работы ядерного реактора.

    Как мы уже говорили, при распаде тяжелого ядра урана образуются более легкие элементы и несколько нейтронов. Образовавшиеся нейтроны сталкиваются с другими ядрами, также вызывая их деление. При этом количество нейтронов растет лавинообразно.

    Здесь нужно упомянуть коэффициент размножения нейтронов . Так, если этот коэффициент превышает значение, равное единице, происходит ядерный взрыв. Если значение меньше единицы, нейтронов слишком мало и реакция угасает. А вот если поддерживать значение коэффициента равным единице, реакция будет протекать долго и стабильно.

    Вопрос в том, как это сделать? В реакторе топливо находится в так называемых тепловыделяющих элементах (ТВЭЛах). Это стержни, в которых в виде небольших таблеток находится ядерное топливо . ТВЭЛы соединены в кассеты шестигранной формы, которых в реакторе могут быть сотни. Кассеты с ТВЭЛами располагаются вертикально, при этом каждый ТВЭЛ имеет систему, позволяющую регулировать глубину его погружения в активную зону. Помимо самих кассет среди них располагаются управляющие стержни и стержни аварийной защиты . Стержни изготовлены из материала, хорошо поглощающего нейтроны. Так, управляющие стержни могут быть опущены на различную глубину в активной зоне, тем самым регулируя коэффициент размножения нейтронов. Аварийные стержни призваны заглушить реактор в случае чрезвычайной ситуации.

    Как запускают ядерный реактор?

    С самим принципом работы мы разобрались, но как запустить и заставить реактор функционировать? Грубо говоря, вот он - кусок урана, но ведь цепная реакция не начинается в нем сама по себе. Дело в том, что в ядерной физике существует понятие критической массы .

    Критическая масса – это необходимая для начала цепной ядерной реакции масса делящегося вещества.

    При помощи ТВЭЛов и управляющих стержней в ректоре сначала создается критическая масса ядерного топлива, а потом реактор в несколько этапов выводится на оптимальный уровень мощности.

    В данной статье мы постарались дать Вам общее представление об устройстве и принципе работы ядерного (атомного) реактора. Если у Вас остались вопросы по теме или в университете задали задачу по ядерной физике – обращайтесь к специалистам нашей компании . Мы, как обычно, готовы помочь Вам решить любой насущный вопрос по учебе. А пока мы этим занимаемся, Вашему вниманию очередное образовательное видео!

    Цепная реакция деления всегда сопровождается выделением энергии огромной величины. Практическое использование этой энергии – основная задача ядерного реактора.

    Ядерный реактор – это устройство, в котором осуществляется контролируемая, или управляемая, ядерная реакция деления .

    По принципу работы ядерные реакторы делят на две группы: реакторы на тепловых нейтронах и реакторы на быстрых нейтронах.

    Как устроен ядерный реактор на тепловых нейтронах

    В типичном ядерном реакторе имеются:

    • Активная зона и замедлитель;
    • Отражатель нейтронов;
    • Теплоноситель;
    • Система регулирования цепной реакции, аварийная защита;
    • Система контроля и радиационной защиты;
    • Система дистанционного управления.

    1 - активная зона; 2 - отражатель; 3 - защита; 4 - регулирующие стержни; 5 - теплоноситель; 6 - насосы; 7 - теплообменник; 8 - турбина; 9 - генератор; 10 - конденсатор.

    Активная зона и замедлитель

    Именно в активной зоне и протекает контролируемая цепная реакция деления.

    Большинство ядерных реакторов работает на тяжёлых изотопах урана-235. Но в природных образцах урановой руды его содержание составляет всего лишь 0,72%. Этой концентрации недостаточно для того, чтобы цепная реакция развивалась. Поэтому руду искусственно обогащают, доводя содержание этого изотопа до 3%.

    Делящееся вещество, или ядерное топливо, в виде таблеток помещается в герметично закрытые стержни, которые называются ТВЭЛы (тепловыделяющие элементы). Они пронизывают всю активную зону, заполненную замедлителем нейтронов.

    Зачем нужен замедлитель нейтронов в ядерном реакторе?

    Дело в том, что рождающиеся после распада ядер урана-235 нейтроны имеют очень высокую скорость. Вероятность их захвата другими ядрами урана в сотни раз меньше вероятности захвата медленных нейтронов. И если не уменьшить их скорость, ядерная реакция может затухнуть со временем. Замедлитель и решает задачу снижения скорости нейтронов. Если на пути быстрых нейтронов разместить воду или графит, их скорость можно искусственно снизить и увеличить таким образом число захватываемых атомами частиц. При этом для цепной реакции в реакторе понадобится меньшее количество ядерного топлива.

    В результате процесса замедления образуются тепловые нейтроны , скорость которых практически равна скорости теплового движения молекул газа при комнатной температуре.

    В качестве замедлителя в ядерных реакторах используется вода, тяжёлая вода (оксид дейтерия D 2 O ), бериллий, графит. Но наилучшим замедлителем является тяжелая вода D 2 O.

    Отражатель нейтронов

    Чтобы избежать утечки нейтронов в окружающую среду, активную зону ядерного реактора окружают отражателем нейтронов . В качестве материала для отражателей часто используют те же вещества, что и в замедлителях.

    Теплоноситель

    Тепло, выделяющееся во время ядерной реакции, отводится с помощью теплоносителя. В качестве теплоносителя в ядерных реакторах часто используют обычную природную воду, предварительно очищенную от различных примесей и газов. Но поскольку вода закипает уже при температуре 100 0 С и давлении 1 атм, то для того чтобы повысить температуру кипения, повышают давление в первом контуре теплоносителя. Вода первого контура, циркулирующая через активную зону реактора, омывает ТВЭЛы, нагреваясь при этом до температуры 320 0 С. Далее внутри теплообменника она отдаёт тепло воде второго контура. Обмен проходит через теплообменные трубки, поэтому соприкосновения с водой второго контура не происходит. Это исключает попадание радиоактивных веществ во второй контур теплообменника.

    А далее всё происходит так, как на тепловой электростанции. Вода во втором контуре превращается в пар. Пар вращает турбину, которая приводит в движение электрогенератор, который и вырабатывает электрический ток.

    В тяжеловодных реакторах теплоносителем служит тяжёлая вода D 2 O, а в реакторах с жидкометаллическими теплоносителями - расплавленный металл.

    Система регулирования цепной реакции

    Текущее состояние реактора характеризует величина, называемая реактивностью.

    ρ = ( k -1)/ k ,

    k = n i / n i -1 ,

    где k – коэффициент размножения нейтронов,

    n i - количество нейтронов следующего поколения в ядерной реакции деления,

    n i -1 , - количество нейтронов предыдущего поколения в этой же реакции.

    Если k ˃ 1 , цепная реакция нарастает, система называется надкритическо й. Если k < 1 , цепная реакция затухает, а система называется подкритической . При k = 1 реактор находится в стабильном критическом состоянии , так как число делящихся ядер не меняется. В этом состоянии реактивность ρ = 0 .

    Критическое состояние реактора (необходимый коэффициент размножения нейтронов в ядерном реакторе) поддерживается перемещением регулирующих стержней . В материал, из которого они изготовлены, входят вещества-поглотители нейтронов. Выдвигая или вдвигая эти стержни в активную зону, контролируют скорость реакции ядерного деления.

    Система управления обеспечивает управление реактором при его пуске, плановой остановке, работе на мощности, а также аварийную защиту ядерного реактора. Это достигается изменением положения управляющих стержней.

    Если какой-нибудь из параметров реактора (температура, давление, скорость нарастания мощности, расход топлива и др.) отклоняется от нормы, и это может привести к аварии, в центральную часть активной зоны сбрасываются специальные аварийные стержни и происходит быстрое прекращение ядерной реакции.

    За тем, чтобы параметры реактора соответствовали нормам, следят системы контроля и радиационной защиты .

    Для защиты окружающей среды от радиоактивного излучения реактор помещают в толстый бетонный корпус.

    Системы дистанционного управления

    Все сигналы о состоянии ядерного реактора (температуре теплоносителя, уровне излучения в разных частях реактора и др.) поступают на пульт управления реактора и обрабатываются в компьютерных системах. Оператор получает всю необходимую информацию и рекомендации по устранению тех или иных отклонений.

    Реакторы на быстрых нейтронах

    Отличие реакторов этого типа от реакторов на тепловых нейтронах в том, что быстрые нейтроны, возникающие после распада урана-235 не замедляются, а поглощаются ураном-238 с последующим превращением его в плутоний-239. Поэтому реакторы на быстрых нейтронах используют для получения оружейного плутония-239 и тепловой энергии, которую генераторы атомной станции преобразуют в электрическую энергию.

    Ядерным топливом в таких реакторах служит уран-238, а сырьём уран-235.

    В природной урановой руде 99,2745 % приходятся на долю урана-238. При поглощении теплового нейтрона он не делится, а становится изотопом урана-239.

    Через некоторое время после β-распада уран-239 превращается в ядро нептуния-239:

    239 92 U → 239 93 Np + 0 -1 e

    После второго β-распада образуется делящийся плутоний-239:

    239 9 3 Np → 239 94 Pu + 0 -1 e

    И, наконец, после альфа-распада ядра плутония-239 получают уран-235:

    239 94 Pu → 235 92 U + 4 2 He

    ТВЭЛы с сырьём (обогащённым ураном-235) располагаются в активной зоне реактора. Эта зона окружена зоной воспроизводства, которая представляет собой ТВЭЛы с топливом (обедненным ураном-238). Быстрые нейтроны, вылетающие из активной зоны после распада урана-235, захватываются ядрами урана-238. В результате образуется плутоний-239. Таким образом, в реакторах на быстрых нейтронах производится новое ядерное топливо.

    В качестве теплоносителей в ядерных реакторах на быстрых нейтронах применяют жидкие металлы или их смеси.

    Классификация и применение ядерных реакторов

    Основное применение ядерные реакторы нашли на атомных электростанциях. С их помощью получают электрическую и тепловую энергию в промышленных масштабах. Такие реакторы называют энергетическими .

    Широко используются ядерные реакторы в двигательных установках современных атомных подводных лодок, надводных кораблей, в космической технике. Они снабжают электрической энергией двигатели и называются транспортными реакторами .

    Для научных исследований в области ядерной физики и радиационной химии используют потоки нейтронов, гамма-квантов, которые получают в активной зоне исследовательских реакторов. Энергия, вырабатываемая ими, не превышает 100 Мвт и не используется в промышленных целях.

    Мощность экспериментальных реакторов ещё меньше. Она достигает величины лишь нескольких кВт. На этих реакторах изучаются различные физические величины, значение которых важно при проектировании ядерных реакций.

    К промышленным реакторам относят реакторы для получения радиоактивных изотопов, используемых для медицинских целей, а также в различных областях промышленности и техники. Реакторы для опреснения морской воды также относятся к промышленным реакторам.