Как крепить гибкую солнечную батарею на крышу. Выбор и монтаж гибких солнечных панелей

Сегодня мы расскажем Вам о том, как установить солнечные батареи для дома своими руками. На самом деле этапы работ по установке панелей или коллекторов, которые используются в современных частных домах для автономного отопления, не слишком трудоемкие. Проблема заключается в том, что нужно правильно расположить устройства на крыше, чтобы они могли функционировать с высоким показателем КПД. Далее мы предоставим к Вашему вниманию пошаговую инструкцию по монтажу, а также наглядные фото и видео примеры!

Существующие варианты крепления

Первым делом поговорим о том, как можно самому устанавливать солнечные батареи в домашних условиях. Существует несколько методов установки, а именно:

  1. На крыше дома со скатом не более 40 градусов. В этом случае можно либо сделать специальную несущую конструкцию из профилей, либо, если угол наклона кровли свыше 30 градусов, установить солнечные панели без кронштейна, как показано на фото ниже (вариант 2).
  2. На плоской крыше здания. При таких условиях необходимо сделать специальный металлический каркас с наклонной плоскостью для крепления солнечных батарей под углом относительно крыши.
  3. На стене. В практике встречается такой способ установки солнечных батарей на крыше крайне редко. Как и в остальных случаях, сначала создается надежная рамная конструкция, к которой и осуществляется крепление. В этом случае батареи также нужно установить под наклоном.
  4. В земле на специальной опоре в виде штанги. Такой вариант установки может использоваться в регионах с сильными снегопадами либо если другие варианты монтажа, кроме как на столбах, не подходят.
  5. На балконе или лоджии. Если Вы решили самостоятельно установить солнечные батареи в квартире, тогда разместить их можно на крыше балкона либо с внешней стороны, как показано на картинках ниже.

Чаще всего в домашних условиях используется первый и второй вариант установки. Сейчас мы рассмотрим, как выполнить монтаж солнечных батарей своими руками и какие нюансы нужно учитывать, чтобы сделать все правильно.

Этапы монтажных работ

Итак, перед тем, как самостоятельно устанавливать панели на крыше жилого дома, Вы должны убедиться в следующем:


На основании всех этих моментов нужно первым делом самому правильно выбрать, где лучше установить систему на крыше дома. Сразу же следует отметить, что система должна находиться на южной стороне постройки, так как именно на эту область приходится максимальное количество солнечной энергии в световой день.

После того как Вы определитесь, где именно будут размещены панели (либо коллекторы), необходимо переходить к сборке рамной конструкции и установке ее на кровлю. Обязательно используйте только металлические уголки и профиля. Изготавливать каркас из бруса не рекомендуется, т.к. он быстрее потеряет свои прочностные свойства. Лучше всего использовать квадратный профиль 25*25 мм либо уголок, но на данном этапе все сугубо индивидуально – если Вы решили установить солнечную батарею большой площади, сечение профиля должно быть на порядок больше.

Полный обзор монтажных работ

Установка креплений на крыше

Отдельное внимание нужно уделить углу наклона панелей к плоскости горизонта, а иначе говоря – земной поверхности. Для каждого региона условия немного отличаются, но обычно весной рекомендуется выполнять установку солнечных батарей под углом 45 градусов, а ближе к осени 70-75. Именно поэтому нужно заблаговременно продумать конструкцию рамы, чтобы можно было вручную выбирать, под каким углом установить систему под солнцем. Обычно раму изготавливают в форме треугольной призмы и крепят к крыше с помощью болтов.

Сразу же обращаем Ваше внимание на то, что на плоской крыше или на земле не нужно выполнять горизонтальную установку панелей. В зимнее время Вам придется постоянно убирать снег с поверхностью, а иначе система не будет работать.

Еще одно не менее важное требование – между крышей и солнечной батареей обязательно должно быть воздушное пространство (актуально в том случае, если Вы решили установить панель без рамы на гибкую либо металлочерепицу). Если воздушное пространство будет отсутствовать, ухудшиться отвод тепла, что может в дальнейшем за короткий промежуток времени вывести систему из строя! Исключением являются крыши из шифера либо ондулина, которые благодаря волнистой структуре кровельного материала, самостоятельно обеспечат подход воздуха.

Ну и последний важный момент установки – солнечные батареи нужно крепить в горизонтальном положении (длинной стороной вдоль дома). Если пренебречь данным правилом может произойти неравномерный нагрев верхней и нижней области панели, что заметно снизит эффективность использовать автономной системы электроснабжения либо отопления частного дома.

В наше время особое значение приобретают возобновляемые источники энергии. Один из них – . Раньше они стоили очень дорого и были только жёсткими. Это ограничивало применение таких источников электроэнергии. Сейчас солнечные элементы подешевели и кроме жёстких появились гибкие солнечные панели.

Устройство жёстких и гибких панелей

Любая солнечная батарея представляет собой слой полупроводника (используется кремний с добавками других элементов), нанесённый на основание. К нему прикрепляются электроды, и вся конструкция покрывается защитным слоем.

Жёсткие панели

Установка жесткой солнечной панели на крышу дома

Жёсткие батареи изготавливаются из кристалла кремния. Его режут на пластинки необходимого размера толщиной 0,3 мм, их наклеиваются на основание, которое определяет прочность конструкции. Чаще всего используется стеклотекстолит. Обычное стекло применяется намного реже, используют его в стационарных конструкциях ввиду их большого веса и низкой прочности. С лицевой стороны панель покрывается герметизирующим слоем.

Такая батарея довольно хрупкая в разложенном состоянии, но в сложенном виде похожа на прочный текстолитовый брусок.

Гибкие панели


Демонстрация свойств гибкой солнечной панели

Гибкие элементы устроены немного иначе. Большое количество слоёв кремния напыляется на гибкое основание. Обычно им служит стальная лента. После этого прикрепляются электроды и вся конструкция ламинируется. Получившуюся плёнку можно скручивать в рулон или изгибать. Поэтому такие батареи получили своё название – гибкие. В сложенном виде этот рулон нуждается в защите, например, в футляре, но в разложенном состоянии довольно прочный благодаря повышенной гибкости.

В переносных моделях гибкие элементы нашиваются на ткань и складываются «гармошкой».

Сферы применения гибких солнечных батарей

Гибкие солнечные панели легче и прочнее кристаллических, но имеют меньшую мощность на единицу площади. Именно эти качества определяют сферы преимущественного использования кристаллических солнечных панелей.


Один из вариантов использования гибкой солнечной панели

Устройства эффективны для применения в электромобилях и электросамолётах, где важен каждый грамм веса.

Это же качество имеет решающее значение для альпинистов и в длительных пеших походах. Кроме того, гибкость этих элементов позволяет нашивать их на рюкзаки и куртки. Это можно сделать своими руками. В чехлах панелей всегда есть отверстия для крепления. В этом случае подзарядка аккумуляторов может происходить прямо во время движения.

А если такая батарея закреплена на крыше палатки, то это избавит от необходимости специально для неё искать место установки.

Гибкие панели устанавливаются также на крышах яхт. Гибкий слой основы позволяет повторить форму крыши, и предотвратить срыв батареи ветром и дождём.

На крышах зданий гибкие панели устанавливаются на шифер или черепицу. Основа таких устройств позволяет повторять рельеф кровельных материалов.

Если подложка прозрачная, то её можно прикрепить к стеклу. Такая панель имеет вид тонированного стекла и позволяет использовать для выработки электроэнергию окна.

Преимущества и недостатки

Как любая вещь, гибкие солнечные панели имеют достоинства и изъяны. Лучше всего они видны в сравнении с жёсткими (кристаллическими) солнечными батареями:

  • Стойкость к механическим повреждениям. Гибкие панели можно гнуть и скручивать в рулон. В сложенном виде нужно переносить в футляре или «гармошкой». У жёстких батарей прочность зависит от основы. Чаще всего используется стеклотекстолит толщиной 1-1,5 мм. В разложенном виде панель лучше не переносить, а в сложенном – она похожа на прочный брусок.
  • Мощность . Гибкие батареи имеют меньший КПД (коэффициент полезного действия) и удельную мощность на единицу площади. Их применение предпочтительнее в ситуации, в которой вес имеет решающее значение. Аморфный слой полупроводника лучше улавливает рассеянный солнечный свет.
  • Цена . Гибкие панели дороже жёстких, но их стоимость постепенно снижается. Аналогичная ситуация была со светодиодными лампами – со временем их производство росло, а цены снижались.
  • Использование . Гибкие элементы можно нашивать на одежду, рюкзаки и заряжать аккумуляторы в дороге. Они легче жёстких, поэтому предпочтительнее для установки на электромобили и электросамолёты, дроны, а также в пеших походах. Повторяют кривизну основания и крепятся на шифер или черепицу. Яхта с такими панелями будет обеспечена электроэнергией даже при выключенном двигателе. Жёсткие батареи используются в стационарных и маломобильных конструкциях (охотничьих домиках и многодневных выездах на рыбалку). Крепить эти устройства можно через специальные отверстия, с помощью двухстороннего скотча или силиконового герметика.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

Важно! Герметик нужен не уксусный, а нейтральный – уксус, как любая кислота, окисляет проводники и соединения.

Как правильно выбрать солнечную батарею

Есть много критериев, по которым выбираются панели:

  1. Мощность . Зависит от количества аппаратов, прогноза погоды (в пасмурную погоду мощность панелей падает и необходим запас). Для телефонов достаточно 6-9 Вт, для фотоаппарата или планшета – 10-20 Вт, а для ноутбука не менее 15.
  2. Вес . Лучше всего выбирать на сайте производителя или магазина. Если батарея будет переноситься в пешем походе, то нужна самая лёгкая, а при перевозке на автомобиле важнее выбрать батарею с максимальным КПД (коэффициентом полезного действия).
  3. Напряжение . Для зарядки телефона, планшета или фотоаппарата достаточно 5 В. Для ноутбука необходимо 12 В и преобразователь 12-220. Солнечные батареи нужны со встроенным или дополнительным стабилизатором, так как выходное напряжение сильно зависит от яркости света.
  4. Цена . Гибкие панели дороже, однако, эта разница постепенно уменьшается.
  5. Надёжность . Гибкие элементы более надёжные, поэтому предпочтительнее в особо важных ситуациях.

При равных условиях стоит выбрать модель, получившую на специализированных форумах лучшие отзывы.

Ремонт гибкой панели

Несмотря на то что производитель таких панелей из-за конкуренции повышает надёжность своей продукции, возможен выход панели из строя.

Ремонт гибкой солнечной батареи заключается в замене неисправного участка. При отсутствии внешних повреждений найти его можно, подключив к выходу прибор (вольтметр) и последовательно затеняя участки батареи.

Гибкие солнечные панели – это перспективные устройства для мобильного (малой мощности) или стационарного электроснабжения.

Видеоматериалы по теме

В настоящее время порядка 80-85% производства солнечных батарей приходится на кристаллические модули. Но по заверениям специалистов этой области, будущее все-таки за тонкопленочной технологией. Ее главное достоинство, способное обеспечить ей лидирующие позиции, это более низкая себестоимость. Модули, производимые с использованием тонкопленочной технологии, получили название гибкие солнечные батареи, благодаря тому, что их эластичность и малый вес позволяют монтировать солнечные модули на любой поверхности и даже вшивать их в одежду.

Для производства гибких модулей используют пленки из полимерных материалов, аморфного кремния, алюминия, теллурида кадмия и других полупроводников. Чаще всего их применяют в качестве переносных зарядных устройств, так называемых складных солнечных батарей, для ноутбуков, видеокамер, мобильных телефонов и другой электроники, не требующей большой мощности. Для выработки значительного количества энергии потребуется и большая площадь модулей.

Подробнее о тонкопленочной технологии

Первые тонкопленочные солнечные батареи изготавливались с использованием аморфного кремния, который наносили тонким слоем на поверхность подложки. Их КПД составлял всего 4-5%, да и срок службы оставлял желать лучшего. Второе поколение аморфных модулей уже имело КПД на 2-3% больше, а срок эксплуатации практически сравнялся со сроком службы кристаллических модулей. А вот КПД третьего поколения модулей увеличилось уже до 12%. Так что прогресс на лицо.

При производстве складных солнечных батарей и гибких модулей больших размеров, чаще всего применяют теллурид кадмия и селенид меди-индия. Использование этих полупроводников дает увеличение коэффициента полезного действия от 5 до 10%. А учитывая, что ученые-физики борются за каждый дополнительный процент, такая разница очень ощутима. Более подробно о производстве солнечных батарей по тонкопленочной технологии .

Особенности тонкопленочных батарей:

  • Хорошо работают даже при рассеянном свете, поэтому суммарная годовая выработка мощности на 10-15% больше, чем у кристаллических модулей.
  • Более низкая стоимость производства, следовательно, данный вид солнечных батарей обойдется Вам дешевле.
  • Большую эффективность показывают в системах с мощностью более 10кВт.
  • При равном показателе вырабатываемой мощности, площадь тонкопленочных модулей примерно в 2,5 раза больше, чем у кристаллических.
  • Требуют использование высоковольтных контроллеров и инверторов.

Случаи, когда применение тонкопленочных модулей обосновано:

  • В регионах, где преобладает пасмурная погода. Модули, выполненные по тонкопленочной технологии, лучше поглощают рассеянный свет.
  • В странах с жарким климатом. При высокой температуре тонкопленочные солнечные батареи показывают большую эффективность.
  • Есть необходимость монтирования панелей в здание либо требуется их использование в качестве дизайнерских задумок или конструкторских решений, например, для отделки фасада.
  • Потребность в модулях с частичной прозрачностью до 20%.

От плоской формы к цилиндрической

Цилиндрические солнечные батареи впервые разработала небольшая американская компания с запоминающимся названием Solyndra (от слов «солнечный» и «цилиндр»). Свое достижение они представили в 2008 году и сразу же получили несколько крупных заказов от европейских и американских фирм. По их заверениям, эта цифра составляла более 1 млрд. $.

До 2008 года солнечные элементы имели плоскую форму. Solyndra же предложила устанавливать в солнечные батареи элементы-цилиндры. Тонкий слой фотоэлемента наносится на поверхность стеклянной трубки, после чего она помещается в еще одну такую же трубку, но уже с электрическими контактами. В качестве полупроводников для элементов используют уже знакомые нам медь, галлий, селен и индий. Цилиндрические солнечные батареи за счет своей формы поглощают большее количество света, и, как следствие, имеют больший показатель производительности. Каждая панель состоит из 40 цилиндров и имеет размеры 1 на 2 метра.

Для увеличения поглощаемого света рекомендуют использовать цилиндрические батареи в сочетании с белым покрытием крыши. В таком случае, отраженные от крыши лучи будут проходить через цилиндры, чем и обеспечат еще плюс 20% поглощенной энергии. Еще одно важное достоинство батарей с элементами цилиндрической формы – это их устойчивость к сильному ветру. Они способны выдерживать порывы ветра скоростью до 200 км/ч. Это делает монтаж солнечных батарей более простым и дешевым.

Многопереходные солнечные элементы

В большинстве производимых в настоящее время солнечных элементах реализован один p-n-переход. То есть свободные электроны в таком элементе создают только те фотоны, которые обладают энергией больше или равной ширине запрещенной зоны. Чтобы преодолеть это ограничение учеными был разработан новый вид солнечных элементов, получивших название каскадные элементы. Они имеют многослойную структуру, состоящую из солнечных элементов, ширина запрещенной зоны которых различна.

Самые перспективные гибкие солнечные батареи, изготовленные с использованием каскадных элементов, имеют 3 p-n-перехода. Верхний слой формируют из сплава на основе a-Si:H, для второго используют сплав a-SiGe:H, содержащий 10-15% германия, для третьего слоя процентное содержание германия в сплаве увеличивают до 40-50%. С каждым последующим слоем ширина запрещенной зоны уменьшается, поэтому каждый следующий слой поглощает те фотоны, которые прошли через предыдущий. В таблице ниже представлены значения КПД каскадных СЭ. Стоит отметить, что столь высокие показатели КПД позволяют уменьшить стоимость получаемой солнечной энергии почти в 2 раза в сравнении с солнечными батареями на основе кристаллического кремния.

Теоретическое значение КПД Ожидаемое значение КПД Реализованное значение КПД
1 p-n-переход 30 27 25,1
2 p-n-перехода 36 33 30,3
3 p-n-перехода 42 38 31,0
4 p-n-перехода 47 42
5 p-n-переходов 49 44

Самые интересные достижения в мире тонкопленочных модулей

2 года назад специалисты лаборатории МГУ разработали рулонные органические солнечные батареи на основе полимера в качестве активного слоя и гибкой органической подложки. Их КПД составлял всего 4%, зато они могли эффективно работать при температуре 80°С в течение 10 тысяч часов. На этом их деятельность не закончилась, исследования ведутся постоянно, основным направлением выбраны солнечные элементы на основе полимерных материалов.

Специалисты федеральной лаборатории технологий и материаловедения в Швейцарии создали солнечный элемент на полимерной подложке с КПД 20,4%. В качестве полупроводника использовались 4 элемента: селен, индий, галлий и медь. На сегодняшний день это рекордный показатель для СЭ, выполненных на основе перечисленных элементов. Предыдущий рекорд составлял 18,7%.

Для тонкопленочных фотоэлементов на основе индия, селена и меди, максимальное значение КПД на сегодня оставляет 19,7%. Такого показателя смогла добиться японская компания Solar Frontier. Поглощающие пленки на фотоэлементы наносили методом напыления, используя термическую обработку в парах селена.

Компания ICP Solar Technologies представила оригинальную складную солнечную батарею. Ее достаточно раскатать в солнечном месте и можно подключать устройство, которое необходимо зарядить. Мощность батареи 5 Вт при напряжении питания 12 В. Согласитесь, незаменимый вариант для всех туристов, хотя и не единственный. Разработкой подобных переносных СБ занимаются различные фирмы. Так не меньшей популярностью пользуется складная солнечная батарея Foldable Solar Chargers, максимальная мощность которой составляет 190 Вт.

Ну и самой интересной разработкой можно назвать «тканевые» солнечные панели. Японские ученые решили соединить крошечные цилиндрические солнечные элементы размером всего 1,2 мм и тканевое полотно. Такое необычное решение позволит создавать высокотехнологичные материалы для одежды и переносные тенты. Промышленное производство «солнечной» ткани намечено на март 2015 года.

Займет ли тонкопленочная технология первое место при производстве солнечных элементов, покажет будущее. Но судя по активным исследованиям, ведущимся в данной области, и по неплохим результатам, вполне возможно, что в ближайшем будущем ученые все-таки смогут создать не просто эффективные солнечные батареи, но еще и доступные при этом широким слоям населения.

Статью подготовила Абдуллина Регина

В этом ролике рассказано о солнечных модулях на базе тонкопленочной технологии, которые позволяют преобразовать в электроэнергию до 10% солнечного излучения и при этом в полтора раза повысить эффективность фотоэлементов, а расход кремния при производстве сократить в 200 раз!

Гибкие тонкопленочные солнечные панели могут стать отличным кровельным материалом на вашей крыше. Для этого тонкую фотопленку просто накладывают на традиционную крышу из черепицы, шифера или металла.
Давайте посмотрим несколько примеров, как это происходит и как это выглядит.


Южная сторона этой крыши покрыта солнечной пленкой, которая дает до 4 кВт электричества.


В Вермонте, США, есть небольшое сообщество Hinesburg, где все 6 домов покрыты такой фотоэлектрической пленкой. Они обеспечивают себя энергией круглый год. Экологические особенности этих домов включают геотермальное отопление, теплые полы и трехслойные стеклопакеты. Окна ориентированы на южную сторону и это помогает прогревать здания зимой.


Три типа солнечных панелей на крыше. Слева направо, коллекторы для подогрева воды, и солнечная пленка интегрированная в кришу

Солнечная пленка не искажает фасад даже старого здания 1930 года постройки. При этом она может окупить себя примерно за 10 лет при ее текущей стоимости. Но из года в год цена на солнечные элементы снижается и становится все доступней.

Эта солнечная крыша на одном из зданий технического университета в штате Миссури. Она простая в установке и в уходе, также на ней легко заметить неисправности и починить.


Солнечная пленка может легка интегрировать в любой дизайн и практически незаметна.


Установка солнечных панелей на металлическую кровлю.


Все соединения прячутся под конёк


Крыша может также стать системой отопления для дома, подогрева воды и пола. Для этого сначала на крышу монтируются вакуумные трубки, которые подсоединены к системе отопления дома, а сверху на них ложатся солнечные панели, которые будут собирать солнечное тепло.


Тонкопленочные гибкие солнечные фотоэлектрические панели.


Если у вас металлическая крыша, то все что вам остается, это почистить ее и наклеить панели. Говорят компания Unisolar, которая делала такие гибкие панели закрылась, а жаль, идея очень интересная.


Монтаж солнечных панелей вместе с металлочерепицей


Намного эффективней, когда солнечные панели интегрированы в кровле еще на заводе. Как это сделано в компании www.ustile.com, тогда и качество сборки лучше и эффективность панелей и надежность всей конструкции.


Солнечная система Panotron.
Малые фотоэлектрические панели вставляются в глиняную черепицу. Монтаж солнечной плитки производится одновременно с кладкой черепицы. Солнечные панели состоят из отдельных монокристаллических элементов, соединенных последовательно. 4 отдельные панели с номинальной мощностью 6,25 Wp вместе образуют фотоэлектрический модуль. Мощность такого модуля 25 Wp; 1 м2 поверхности имеет выходную мощность 75 WP. www.panotron.com

Солнечная черепица.

Установлена на одном уровне с битумной черепицей. Для крепления достоточно просверлить только одно отверствие.


Солнечная черепица накладывается одна на другую и провода идут по низу через просверленные отверствия, связывая кажду из них. Дальше они поступают на мансарду, где соединены с общей системой.


Солнечная черепица не обязательно должна идти сверху вниз. Вот вариант, когда она выложена в виде чешуи.


Немецкие разработчики создали здание которое полностью покрыто солнечными панелями. 40 монокристаллических кремниевых панелей на крыше и около 250 тонких пленок меди индия галлия диселенида (CIGS) панелей по бокам вырабатывают до 200% электричества, необходимого для дома. Однажды во время теста сгенерировал 19 кВт енергии. solardecathlon.gov


Интегрированные солнечные панели могут выдерживать даже сильные ветры.


Солнечная плитка бескаркасная и может быть установлена на любой кровле, а также может быть вкраплена между плиткой такого же размера, но с различной функциональностью: тепловыми коллекторами и мансардными окнами, а также стандартной черепицей.
pvsystems.meyerburger.com


Фрайбург - солнечный , проблеск будущего.
Солнечная деревня Sonnenschiff, Фрайбург, Германия, была построена архитектором Рольфом Дишем. Все 58 домов производят больше энергии, чем они потребляют. В общем они генерируют 420000 кВтч солнечной энергии от общей, около 445 кВт в год. Здесь нет частных автомобилей, но зато хорошо организована система Car-Sharing. www.rolfdisch.de

В мире есть достаточно много компаний, которые создают разные типы встроенных солнечных панелей и солнечной пленки. И с каждым днем их ассортимент становится все разнообразней, и продуктивность их все выше, а цена доступней.


И хотя многие из производителей гибких пленочных солнечных панелей не имеют представительства в нашей стране, вы можете найти и заказать их на Ebay.

Люди давно задумываются об экологически чистых и дешевых энергетических ресурсах. Поэтому альтернативой энергетики, основанной на применении углеводородов, становятся ветряки и солнечные батареи. Тяжеловесные конструкции со временем трансформировались в изящные панели. Их используют в быту, автомобилестроении, освоении космоса.

Устройство и работа модулей

Гибкая солнечная панель устроена следующим образом: тонкая подложка покрыта кремниевым полупроводником. Толщина панели с напылением составляет не более 1 мкм. Полупроводник нагревается солнцем, в результате чего электроны перемещаются в заданном направлении. К элементам монтируют выводы и формируют батарею. Для работы такой мобильной электростанции используют солнечную энергию.

Крупногабаритные, с маленьким КПД, солнечные батареи ушли в прошлое. Современным моделям не требуется максимальное количество солнечного света, а сами конструкции стали легкими, гибкими, мобильными, их можно свернуть в трубку и взять с собой в поход.

В настоящее время аморфный кремний заменяют сульфиды и теллуриды кадмия, медно-галлиевые и индиевые диселениды, полимерные соединения.

Для повышения КПД современные технологии позволяют выпускать многослойные полупроводниковые конструкции. Каскадное строение панели дает возможность преобразовывать отраженный свет несколько раз, что доводит их работоспособность почти до кристаллических вариантов.

Несмотря на то что устройство выглядит довольно просто, для подачи тока в сеть необходимы дополнительные составляющие:

  • Аккумулятор, накапливающей энергию. Он нужен при перепадах напряжения.
  • Инвертор, переводящий постоянный ток в переменный.
  • Система для корректировки заряда аккумулятора.

Отличительные характеристики

Гибкие гелиомодули имеют свои особенности:

  • Тонкая податливая структура батарей дает возможность использовать их на нестандартных типах поверхности.
  • Имеют высокий уровень оптического поглощения фотонов, это увеличивают их КПД.
  • Гибкие батареи способны работать даже в облачную погоду, что говорит о высокой производительной выработке.
  • Наиболее актуален такой вид энергии в жарком климате, там, где гелиомодули получают максимальное количество солнечных лучей.
  • Особо высокую продуктивность солнечные панели показывают на крупных гелиокомплексах.

Преимущества и недостатки

Гибкая солнечная панель, благодаря своей мобильности, имеет преимущества над другими видами батарей.

К ее достоинствам относится:

  • Надежность изделия обеспечена мерами, предохраняющими от механического разрушения, воздействия влаги. Легкий вес и большая площадь позволяет панели оставаться невредимой при падении с многометровой высоты. Большинство конструкций оснащены чехлами.
  • Ультратонкая панель имеет небольшую массу, 6-ваттная батарея весит менее 300 грамм, тогда как кристаллическая таких же параметров – на 100 г больше.
  • Эффективность работы пленочных моделей составляет 15%, кристаллических – 20%. Но в пересчете КПД на массу тела, солнечная панель имеет преимущества.

К недостаткам можно отнести цену, которая превышает стоимость жесткой батареи. Пока еще не слишком большой спрос удерживает ценовую политику. Постепенно ситуация в этом отношении будет улучшаться.

Применение

Устройства, преобразующие свет в электрический ток, давно нашли свое применение. Гибкие солнечные панели облегчают жизнь людей во многих сферах деятельности, от бытового уровня до космических разработок.

При архитектурной отделке домов гибкие панели монтируют на крышах и в окнах зданий. Стекло «триплекс» с функционалом солнечной генерации собирает энергию света, не нарушая прозрачность окон и создает приятный микроклимат в помещении. В комнатах, где установлены окна с триплексом, можно обходиться без кондиционера.

Подобные стекла устанавливают в учебных заведениях, торговых павильонах, на остановках общественного транспорта, его используют для уличных бассейнов и в теплицах.

Небольшой вес панелей делает их востребованными в самолетостроении, ими оснащают электрические автомобили, лодки, аэростаты. Нашли свое применение гибкие конструкции в военном деле, судостроении, кинематографе, их применяют работники полиции и МЧС.

Панели монтируются на любой поверхности, поэтому их с успехом используют в быту.

Пленочную батарею можно встретить на часах, калькуляторах, в качестве нашивок на одежде, на чехлах. Некоторые модули созданы для ношения на сумках и рюкзаках. Power bank с солнечными фотоэлементами позволяет в экспедициях и походах заряжать телефоны, планшеты, фонарики, фотоаппараты.

Фотопанели на основе аморфного кремния нашли свое применение на космических станциях, с учетом малого веса, их легко доставить на околоземную орбиту, а энергоемкость подобных конструкций в пять раз превышает кристаллические варианты. Удобно использовать солнечные панели на объемных гелиостанциях, где достаточно места для их размещения.

Выбор

Одним из важных критериев выбора являются климатические условия местности, в которой будут установлены гелиопанели. Учитывается количество солнечных дней в году и длина самого дня. Исходя из этих данных, определяется мощность электроэнергии, которую должна вырабатывать батарея в час или сутки. Для северных районов подойдет текстурированное стекло, оно эффективно справляется с работой даже в пасмурные дни. Модули из микроморфного кремния не требуют точной ориентации на солнце, их суммарная годовая мощность превосходит другие тонкопленочные батареи. На них часто останавливают свой выбор жители районов с малой освещенностью.

Выбирая модуль для дома, необходимо продумать, какие электроприборы будут востребованы, хватит ли для них мощности предполагаемой покупки.

Нужно заранее определиться с местом для солнечных панелей и предусмотреть резервную территорию, если понадобится нарастить мощность.

При покупке учитывается тип конструкции, материал, толщина фотоэлемента, производитель модуля – все это влияет на цену, качество и длительность работы. Не обязательно переплачивать за иностранные бренды, хорошо себя зарекомендовали модули российского производства, ориентированные на наши климатические условия.

Для расчета количества модулей, следует учитывать, что семья из 4 человек, в среднем, потребляет 200–300 кВт электроэнергии в месяц. Солнечные панели вырабатывают с одного квадратного метра примерно от 25 Вт до 100 Вт в сутки. Для полного удовлетворения дома в потребностях электричества, понадобится 30–40 секций. Оснащение солнечными батареями обойдется семье около 10 тысяч долларов. Устанавливать панели следует на южную сторону крыши, куда попадает максимальное количество солнечных лучей.

Чтобы определиться с выбором, следует понять, какой тип модуля больше подходит покупателю:

  • Монокристаллические фотоэлементы стоят 1,5 доллара за Вт. Они имеют меньшие размеры и более эффективны, чем другие виды подобных батарей. Их общее покрытие занимает меньше места. Учитывая мощность и качество, лучше сделать выбор в их пользу. Единственным минусом является высокая стоимость.
  • Поликристаллические батареи стоят 1,3 доллар за Вт. По мощности они уступают монокристаллическим, но и оцениваются дешевле. Бюджетные возможности привлекают покупателей, к тому же последние разработки подобных батарей сильно приблизили их КПД к монокристаллическим аналогам.

  • Солнечные тонкопленочные панели имеют меньше мощности на один квадратный метр, чем предыдущие модели. Ситуацию выравнивает появление на рынке модулей из микроморфного кремния. Они вырабатывают хорошую суммарную мощность за годовой отрезок времени, отлично себя зарекомендовали в работе видимого и инфракрасного спектра. Для них не важна привязанность к солнечным лучам. Срок эксплуатации батарей составляет 25 лет. Модули имеют недорогую технологию производства, это сказалось на их стоимости – 1,2 доллара за Вт.
  • Большой интерес представляет собой гибридная панель, так как она генерирует тепловую и электрическую энергию. Конструкция соединяет в себе коллектор тепла и элементы фотоэлектрической батареи.