Современный скафандр для выхода в космос. Проектно-исследовательская работа Эволюция «космической одежды» От скафандра Гагарина до «Орлана-МКС

aslan wrote in April 12th, 2017

Мало кто знает, что для советской экспедиции на Луну была полностью готова и испытана только одна компонента — космический лунный скафандр «Кречет». Еще меньше людей знают, как он устроен.


С развитием реактивной авиации всерьез встали проблемы защиты и спасения экипажа при высотных полетах. С падением давления человеческому организму становится все труднее усваивать кислород, обычный человек без особых проблем может находиться на высоте не более 4−5 км. На больших высотах необходимо добавление кислорода во вдыхаемый воздух, а с 7−8 км человек вообще должен дышать чистым кислородом. Выше 12 км легкие и вовсе теряют возможность усваивать кислород — для поднятия на большую высоту требуется компенсация давления.

На сегодняшний день существует всего два типа компенсации давления: механическая и создание вокруг человека газовой среды с избыточным давлением. Типичным примером решения первого типа служат высотные компенсационные летные костюмы — например, ВКК-6, применяемые пилотами «МиГ-31». В случае разгерметизации кабины такой костюм создает давление, сдавливая тело механическим путем. В основе такого костюма лежит довольно остроумная идея. Тело пилота опутывают ленточки, напоминающие восьмерку.

В меньшее отверстие пропущена резиновая камера. В случае разгерметизации в камеру подается сжатый воздух, она увеличивается в диаметре, сокращая, соответственно, диаметр кольца, опутывающего пилота. Однако такой метод компенсации давления является экстремальным: тренированный летчик в компенсирующем костюме может провести в разгерметизированной кабине на высоте не более 20 минут. Да и создать равномерное давление на все тело таким костюмом невозможно: некоторые участки тела оказываются перетянутыми, некоторые — вообще несдавленными.

Другое дело — скафандр, по сути, представляющий собой герметичный мешок, в котором создано избыточное давление. Время пребывания человека в скафандре практически не ограничено. Но и он имеет свои недостатки — ограничение подвижности летчика или космонавта. Что такое рукав скафандра? Практически это аэробалка, в которой создано избыточное давление (в скафандрах обычно поддерживается давление в 0,4 атмосферы, что соответствует высоте 7 км). Попробуйте согнуть накачанную автомобильную камеру. Трудновато? Поэтому один из самых охраняемых секретов производства скафандров — технология производства специальных «мягких» шарниров. Но обо всем по порядку.

«Воркута»
Первые скафандры, до войны изготавливаемые в ЛИИ им. Громова, создавались в исследовательских целях и использовались в основном для экспериментальных полетов на стратосферных воздушных шарах. После войны интерес к скафандрам возобновился, и в 1952 году в подмосковном Томилине было открыто специальное предприятие по изготовлению и разработке таких систем — Завод № 918, ныне НПП «Звезда». В течение 50х годов предприятие разработало целую линейку экспериментальных скафандров, но только один из них, «Воркута», созданный под перехватчик «Су-9», был выпущен малой серией.

Практически одновременно с выпуском «Воркуты» предприятию было выдано задание на разработку скафандра и системы спасения для первого космонавта. Первоначально КБ Королева выдало «Звезде» техзадание на разработку скафандра, целиком замкнутого на систему жизнеобеспечения корабля. Однако за год до полета Гагарина было получено новое задание — на обычный защитный костюм, рассчитанный на спасение космонавта только при его катапультировании и приводнении.

Противники скафандров вероятность разгерметизации корабля считали чрезвычайно малой. Еще через полгода Королев опять поменял решение — на этот раз в пользу скафандров. За основу были взяты уже готовые авиационные скафандры. Времени на состыковку с бортовой системой корабля уже не осталось, поэтому был принят автономный вариант системы жизнеобеспечения скафандра, размещаемый в катапультном кресле космонавта.

Оболочка для первого космического скафандра СК-1 была во многом позаимствована от «Воркуты», но шлем был сделан полностью заново. Задача ставилась предельно жестко: скафандр должен был спасти космонавта обязательно! Никто не знал, как поведет себя человек во время первого полета, поэтому система жизнеобеспечения строилась так, чтобы спасти космонавта, даже если он потеряет сознание, — многие функции были автоматизированы. Например, в шлеме был установлен специальный механизм, управляемый датчиком давления. И если в корабле оно резко падало, специальный механизм мгновенно захлопывал прозрачное забрало, полностью герметизируя скафандр.

Послойно
Скафандры состоят из двух основных оболочек: внутренней герметичной и внешней силовой. В первых советских скафандрах внутренняя оболочка изготавливалась из листовой резины методом элементарного склеивания. Резина, правда, была специальной, для ее производства применялся высококачественный натуральный каучук. Начиная со спасательных скафандров «Сокол» герметичная оболочка стала резинотканевой, однако в скафандрах, предназначенных для выхода в открытый космос, альтернативы листовой резине пока не предвидится.

«Лунный» скафандр астронавтов - участников миссий Apollo.

Внешняя оболочка — тканевая. Американцы для нее используют нейлон, мы — отечественный аналог, капрон. Она защищает резиновую оболочку от повреждений и держит форму. Лучшей аналогии, чем футбольный мяч, придумать сложно: кожаный внешний чехол защищает внутреннюю резиновую камеру от бутс футболистов и обеспечивает неизменные геометрические размеры мяча.

Провести продолжительное время в резиновом мешке никакой человек не сможет (кто имеет армейский опыт марш-бросков в прорезиненном общевойсковом защитном комплекте, поймет это особенно хорошо). Поэтому в каждом скафандре в обязательном порядке присутствует система вентиляции: по одним каналам подводится ко всему телу кондиционированный воздух, по другим — отсасывается.

По методу работы системы жизнеобеспечения скафандры делятся на два вида — вентиляционные и регенерационные. В первых, более простых по конструкции, использованный воздух выбрасывается наружу, аналогично современным аквалангам. По такому принципу были устроены первые скафандры СК-1, скафандр Леонова для выхода в открытый космос «Беркут» и легкие спасательные скафандры «Сокол».

Термос
Для длительного пребывания в космосе и на поверхности Луны потребовались регенерационные скафандры длительного пребывания — «Орлан» и «Кречет». В них выдыхаемый газ регенерируется, из него отбирается влага, воздух донасыщается кислородом и охлаждается. По сути, такой скафандр в миниатюре копирует систему жизнеобеспечения целого космического корабля. Под скафандр космонавт одевает специальный сетчатый костюм водяного охлаждения, весь пронизанный пластиковыми трубками с охлаждающей жидкостью. Проблемы обогрева в выходных скафандрах (предназначенных для выхода в открытый космос) не возникала никогда, даже если космонавт работал в тени, где температура стремительно падает до -100С.

Дело в том, что наружный комбинезон идеально выполняет функции теплозащитной одежды. Для этого впервые была применена экранно-вакуумная изоляция, работающая по принципу термоса. Под внешней защитной оболочкой комбинезона расположены пять-шесть слоев специальной пленки из особого полиэтилена, терифталата, с двух сторон которой напылен алюминий. В вакууме между слоями пленки теплообмен возможен только за счет излучения, которое переотражается обратно зеркальной алюминиевой поверхностью. Внешний теплообмен в вакууме в таком скафандре настолько мал, что считается равным нулю, и при расчете учитывается только внутренний теплообмен.

Впервые экранно-вакуумная теплозащита была применена на «Беркуте», в котором Леонов вышел в открытый космос. Однако под первые спасательные скафандры, которые работали не в вакууме, одевался ТВК (теплозащитный вентилируемый костюм), сделанный из теплого простеганного материала, в котором и были проложены вентиляционные магистрали. В современных спасательных скафандрах «Сокол» этого нет.

Помимо всего этого на космонавтов надевается хлопчатобумажное белье со специальной антибактериальной пропиткой, под которым расположен последний элемент — специальный нагрудник с закрепленными на нем телеметрическими датчиками, передающими информацию о состоянии организма космонавта.

Соколята
Скафандры были на кораблях не всегда. После успешных шести полетов «Востоков» они были признаны бесполезным грузом, и все дальнейшие корабли («Восходы» и «Союзы») проектировались на полет без штатных скафандров. Целесообразным было принято использование только внешних скафандров для выхода в открытый космос. Однако гибель в 1971 году Добровольского, Волкова и Пацаева в результате разгерметизации кабины «Союза-11» заставила снова вернуться к проверенному решению. Однако старые скафандры в новый корабль не влезали. В срочном порядке под космические нужды стали адаптировать легкий скафандр «Сокол», изначально разрабатываемый для сверхзвукового стратегического бомбардировщика Т-4.

Задача оказалась не из легких. Если при приземлении «Востоков» космонавт катапультировался, то «Восходы» и «Союзы» осуществляли мягкую посадку с экипажем внутри. Мягкая она была только относительно — удар при приземлении был ощутимый. Амортизировало удар энергопоглощающее кресло «Казбек» разработки все той же «Звезды». Формовался «Казбек» индивидуально под каждого космонавта, который лежал в нем без единого зазора. Поэтому кольцо, к которому крепится шлем скафандра, при ударе обязательно бы сломало шейный позвонок космонавта.

В «Соколе» было найдено оригинальное решение — секторный шлем, не закрывающий затылочную часть скафандра, которая делается мягкой. Из «Сокола» также убрали ряд аварийных систем и теплозащитный слой, так как в случае приводнения при покидании «Союза» космонавты должны были переодеться в специальные костюмы. Была сильно упрощена и система жизнеобеспечения скафандра, рассчитанная всего на два часа работы.

В итоге «Сокол» стал бестселлером: начиная с 1973 года их было изготовлено более 280 штук. В начале 90-х два «Сокола» были проданы в Китай, и первый китайский космонавт полетел покорять космос в точной копии русского скафандра. Правда, нелицензионной. А вот скафандры для открытого космоса китайцам никто не продал, поэтому выхода в открытый космос они пока даже не планируют.

Кирасиры
В целях облегчения конструкции и увеличения подвижности внешних скафандров существовало целое направление (прежде всего в США), изучавшее возможность создания цельнометаллических жестких скафандров, напоминающих глубоководные водолазные. Однако частичное воплощение идея нашла только в СССР. Советские скафандры «Кречет» и «Орлан» получили комбинированную оболочку — жесткий корпус и мягкие ноги и руки. Сам корпус, который конструкторы называют кирасой, сваривается из отдельных элементов из алюминиевого сплава типа АМГ. Такая комбинированная схема оказалась на редкость удачной и сейчас копируется американцами. А возникла она по необходимости.

Американский лунный скафандр был сделан по классической схеме. Вся система жизнеобеспечения располагалась в негерметичном ранце на спине астронавта. Советские конструкторы, возможно, также пошли бы по этой схеме, если бы не одно «но». Мощность советской лунной ракеты Н-1 позволяла доставить на Луну только одного космонавта, в отличие от двух американских, а облачиться в одиночку в классический скафандр не представлялось возможным. Поэтому и была выдвинута идея жесткой кирасы с дверцей на спине для входа внутрь.

Специальная система тросиков и боковой рычаг позволяли надежно закрыть за собой крышку. Вся система жизнеобеспечения располагалась в откидной дверце и работала не в вакууме, как у американцев, а в нормальной атмосфере, что упрощало конструкцию. Правда, шлем пришлось делать не поворотным, как в ранних моделях, а монолитным с корпусом. Обзор же компенсировался гораздо большей площадью остекления. Сами шлемы в скафандрах настолько интересны, что заслуживают отдельной главы.

Шлем всему голова
Шлем — важнейшая часть скафандра. Еще в «авиационном» периоде скафандры делились на два типа — масочные и безмасочные. В первом — летчик использовал кислородную маску, по которой подавалась воздушная смесь для дыхания. Во втором — шлем отделялся от остального объема скафандра своеобразным воротничком, шейной герметичной шторкой. Такой шлем играл роль большой кислородной маски с непрерывной подачей дыхательной смеси. В итоге победила безмасочная концепция, которая обеспечивала лучшую эргономику, хотя и требовала большего расхода кислорода для дыхания. Такие шлемы и перекочевали в космос.

Космические шлемы также делились на два типа — съемные и несъемные. Первый СК-1 комплектовался несъемным шлемом, а вот леоновский «Беркут» и «Ястреб» (в котором Елисеев и Хрунов в 1969 году переходили из корабля в корабль) имели съемные шлемы. Причем присоединялись они специальным герморазъемом с гермоподшипником, что давало возможность космонавту вертеть головой. Механизм поворота был довольно интересен.

На кадрах кинохроники хорошо видны шлемофоны космонавтов, которые изготавливаются из ткани и тонкой кожи. На них смонтированы системы связи — наушники и микрофоны. Так вот, выпуклые наушники шлемофона входили в специальные пазы жесткого шлема, и при повороте головы шлем начинал вращение вместе с головой, как башня танка. Конструкция была довольно громоздкой, и от нее в дальнейшем отказались. На современных скафандрах шлемы несъемные.

Обязательный элемент шлема для выхода в космос — светофильтр. У Леонова был маленький внутренний светофильтр самолетного типа, покрытый тонким слоем серебра. При выходе в космос Леонов ощутил очень интенсивное нагревание нижней части лица, а при взгляде в сторону Солнца защитные свойства серебряного светофильтра оказались недостаточными — свет был ослепительно ярким. Исходя из этого опыта, все последующие скафандры стали оборудоваться полными наружными светофильтрами с напыленным довольно толстым слоем чистого золота, обеспечивающего пропускание всего 34% света. Самая большая площадь остекления — у «Орлана».

Причем на последних моделях есть даже специальное окошко сверху — для улучшения обзора. Разбить «стекло» шлема практически невозможно: делается оно из сверхпрочного поликарбоната лексана, который также используется, например, при остеклении бронекабин боевых вертолетов. Однако и стоит «Орлан» как два боевых вертолета. Точную цену не называют, но предлагают ориентироваться на стоимость американского аналога — $12 млн.

Жми на кнопку, чтобы подписаться на "Как это сделано"!

Если у вас есть производство или сервис, о котором вы хотите рассказать нашим читателям, пишите Аслану ([email protected] ) и мы сделаем самый лучший репортаж, который увидят не только читатели сообщества, но и сайта Как это сделано

Подписывайтесь также на наши группы в фейсбуке, вконтакте, одноклассниках, в ютюбе и инстаграме , где будут выкладываться самое интересное из сообщества, плюс видео о том, как это сделано, устроено и работает.

Жми на иконку и подписывайся!

12 апреля 2010 г. исполняется ровно 49 лет с момента первого космического полета, совершенного Юрием Гагариным в 1961-м году. В этот день вся планета отмечает всемирный день авиации и космонавтики.

По этому поводу я решил написать пост про космические скафандры - рассказать про историю их возникновения, конструкцию и по возможности сравнить наши скафандры с американскими аналогами.

Немного докосмической истории

Необходимость создания скафандра появилась еще в начале 30-х годов. Дело в том, что летчики-испытатели даже в кислородных шлемах не могли подняться на высоты больше 12 км из-за пониженного атмосферного давления. На этой высоте азот, растворенный в тканях человека, начинает переходить в газообразное состояние, что приводит к возникновению болевых ощущений.

Поэтому в 1931-м году инженер Е. Чертовский спроектировал первый скафандр «Ч-1». Он представлял собой простой герметичный комбинезон со шлемом, снабженным небольшим стеклом для обзора. Вообще, в «Ч-1» можно было делать все что угодно, но только не работать. Но тем не менее он стал прорывом. Позднее до войны Чертовский успел спроектировать еще шесть моделей скафандров.

После войны стали появляться первые реактивные истребители, которые резко задрали планку максимальных высот. В 1947-1950 годах группа конструкторов под руководством А. Бойко создала первые послевоенные авиаскафандры, получившие название ВСС-01 и ВСС-04 (высотный спасательный скафандр). Они представляли собой герметические комбинезоны из прорезиненной ткани, к которым крепились несъемные откидные шлемы и кислородные маски. Излишки давления на высоте стравливались специальным клапаном.

Начало разработки

Вообще, разработка скафандров поначалу складывалась у нас не очень хорошо. Дело в том, что существующие наработки скафандров были бесполезны в случае разгерметизации корабля в космосе. И конструкторы тут не причем - просто им дали задание разработать защитный костюм, рассчитанный на спасение космонавта только после приземления или приводнения спускаемого модуля. Среди противников скафандров были даже некоторые из конструкторов корабля - они считали возможность разгерметизации ничтожной. Их слова подтверждал удачный полет Лайки в ГЖК (герметической кабины для животных)

Споры удалось прекратить только после личного вмешательства Королева. При этом до полета Гагарина оставалось всего 8 месяцев. За это время был создан скафандр СК-1

Всего существует 3 класса скафандров:

Спасательные скафандры - служат для защиты космонавтов в случае разгерметизации кабины или при значительных отклонениях параметров ее газовой среды от нормы;
скафандры для работы в открытом космосе на поверхности космического корабля или вблизи его
скафандры для работы на поверхности небесных тел

СК-1 был скафандром первой категории. Он использовался во время всех полетов кораблей первой серии «Восток»

СК-1 «работал» в паре со специальным теплозащитным комбинезоном, который надевался космонавтом под основной защитный костюм. Комбинезон был не просто одеждой, он представлял собой целое инженерное сооружение с вмонтированными в него трубопроводами системы вентиляции, поддерживавшей необходимый тепловой режим тела и удалявшей влагу с продуктами дыхания. В непредвиденных условиях, система жизнеобеспечения скафандра (СЖО) вместе с СЖО кабины «продлевали» существование космонавта на 10 суток. В случае разгерметизации кабины автоматически закрывалось прозрачное «забрало» - иллюминатор шлема - и включалась подача воздуха из баллонов корабля.

Но у него был существенный недостаток. Его мягкая оболочка под действием внутреннего избыточного давления всегда стремится, принять форму тела вращения и распрямиться. Согнуть какую-либо ее часть, скажем, рукав или штанину, не так-то просто, и чем больше внутреннее давление, тем труднее это сделать. При работе в первых космических скафандрах из-за их относительно низкой подвижности космонавтам приходилось затрачивать немалые дополнительные усилия, что в итоге вело к повышению интенсивности обменных процессов в организме. Из-за этого, в свою очередь, приходилось увеличивать массу и габариты запасов кислорода, а также блоков системы охлаждения.

Также был создан скафандр СК-2. По сути это тот же СК-1, только для женщин. Он имел немного другую форму, учитывающие их физиологические особенности.

Аналог

Американским аналогом нашему СК-1 был скафандр для кораблей «Меркурий». Он также являлся исключительно спасательным скафандром и был изготовлен в 1961-м году

В дополнение ко всему у него был металлизированный наружный слой для отражения тепловых лучей.

Беркут

В середине 1964-го руководители советской космической программы приняли решение о новом эксперименте на орбите - первом выходе человека с борта космического корабля в открытый космос. Это обстоятельство ставило перед разработчиками скафандров целый ряд новых технических задач. Они, конечно, диктовались серьезными различиями между внутренней средой космического корабли и условиями внешнего пространства - царства почти полного вакуума, вредных излучений и экстремальных температур.

Перед разработчиками ставились две основные задачи:

Во-первых, скафандр для выхода в космос должен был защищать от перегрева, если космонавт находится на солнечной стороне, и, наоборот, от охлаждения - если в тени (разница температур между ними составляет более 100°С). Также он должен был защищать от солнечной радиацией и от метеорного вещества.

Во-вторых, обеспечить максимальную безопасность человеку, быть предельно надежным и иметь минимальный объем и массу. Но самое главное, что при всем этом космонавт в нем должен быть работоспособен, т.е. передвигаться около корабля, выполнить определенную работу и т.д.

Все эти требования удалось реализовать в скафандре «Беркут»

Кстати, начиная с «Беркута» все наши скафандры стали называться птичьими именами.

Скафандр был сделан из нескольких слоев пленки с блестящей алюминиевой поверхностью. Место между слоями специально имело зазор для того, чтобы снизить передачу тепла в любую сторону. Принцип термоса - тепло не берется и не отдается. Кроме того, слои пленки-ткани разделилясь специальным сетчатым материалом. В результате удалось добиться очень высокого уровня теплового сопротивления. Глаза космонавта защищал особый светофильтр из тонированного органического стекла толщиной почти полсантиметра. Он играл двоякую роль - ослаблял интенсивность солнечного света и не пропускал к лицу биологически опасную часть лучей солнечного спектра.

Первый выход в открытый космос имел ограниченные задачи. Потому и система жизнеобеспечения казалась относительно простой и была рассчитана на 45 минут работы. Она размещалась в ранце с кислородным прибором и баллонами емкостью по 2 литра. На корпусе ранца крепился штуцер для их заправки и окошко манометра для контроля за давлением. Из корабля брался воздух, который дополнительно обогащался кислородом и поступал в скафандр. Этот же воздух уносил выделенные космонавтом тепло, влагу, углекислоту, вредные примеси. Такая система называется системой открытого типа

Вся система умещалась в ранце размером 520х320х120 мм, который пристегивался к спине при помощи быстродействующего разъема. На непредвиденный случай в шлюзовой камере установили резервную кислородную систему, которая была соединена со скафандром с помощью шланга.

Аналог

Аналогом для беркута был скафандр для кораблей «Джеминай»

Его корабельныя версия (не знаю как по другому ее назвать) была обычным спасательным скафандром. Модифицированная же версия была разработана для работы за пределами космического корабля

Для этого к основному скафандру добавлялись оболочки тепловой и микрометиоритной защиты.

Ястреб

С 1967-го начались полеты новых кораблей типа «Союз», принципиальное отличие которых от предшественников состояло в том, что они были уже пилотируемыми летательными аппаратами. И, следовательно, потенциальное время работы человека и космосе вне корабля должно было увеличиться. Соответственно невозможно было находиться все время в скафандре. Он надевался только в самых ответственных моментах - взлет, посадка. К тому же встал вопрос о выводе на орбиту нескольких кораблей, их стыковке, что предполагало проведение операций, связанных с переходами людей через открытый космос.

Для этих целей был разработан новый скафандр с новой системой жизнеобеспечения. Его назвали «Ястреб»


Этот скафандр был в основном схож с «Беркутом», различия же состояли в иной системе дыхательной установки, которая относилась к так называемому регенерационному типу. Дыхательная смесь циркулировала внутри скафандра по замкнутому контуру, где очищалась от углекислоты, вредных примесей, подпитывалась кислородом и охлаждалась. Частью системы остались и кислородные баллоны, однако содержащийся в них кислород использовался только на компенсацию утечек и для потребления космонавта. Для этой системы пришлось создать сразу несколько уникальных агрегатов: испарительный теплообменник, работающий в специфических условиях невесомости; поглотитель углекислого газа; электродвигатель, безопасно функционирующий в чистой кислородной атмосфере и создающий необходимую циркуляцию воздушной среды внутри скафандра, и другие.

Для охлаждения организма космонавта использовалось воздушное охлаждение. Для этого необходимо прогонять через скафандр весьма большой объем газа. Это, в свою очередь, требует вентилятора мощностью в несколько сот ватт, а также больших затрат электроэнергии. Да и сильный обдув не очень-то приятен для космонавта.

Заметным плюсом стало то, что масса скафандра не превышает 8-10 кг, а толщина пакета оболочек минимальна. Это дает возможность использовать его с индивидуальной фактурой амортизационных кресел, ослабляющими действие перегрузок при выводе на орбиту и спуске.

На практике «Ястреб» использовался всего один раз - для перехода из «Союза-5» в «Союз-4».

Аналог

Конкретного американского аналога «Ястребу» я не нашел. Отчасти под него вроде подходит скафандр для ранних «Аполлонов»

Кречет

Для полета на Луну сооружался инновационный скафандр 3-й категории. В скафандре космонавт должен был сохранить такие двигательные и рабочие способности, которые на 3емле считаются элементарными. Например, передвигаться по лунной поверхности с учетом того, что «прогулки» могут происходить на различном рельефе; иметь возможность встать на ноги в случае падения, осуществить контакт с лунной «землей», температура которой колеблется в очень широких пределах (в тени и на свету от -130°С до +160°С); работать с приборами, собирать образцы лунных пород и производить примитивное бурение. Космонавту должна была быть обеспечена возможность подкрепиться специальной жидкой пищей, а также выводить из скафандра урину. Словом, вся система жизпеобеспечения рассчитывалась на более тяжелые условия работы, чем те, что существовали во время орбитальных выходов исследователей.

Учитывая эти требования, под руководством А. Стоклицкого, был создан скафандр «Кречет»


Он имел так называемую «полужесткую» оболочку, а вместо ранцевой - встроенную систему жизнеобеспечения. Именно с него пошло словосочетание «войти в скафандр». Потому что в «Кречет» космонавт именно входил, используя «дверцу» на спине. В «дверце» же размещались все системы жизнеобеспечения

Системы «Кречета» обеспечивали рекордное автономное пребывание человека на Лyнe - до 10 часов, в течение которых исследователь мог выполнять работы с большими физическими нагрузками. Для теплового охлаждения впервые применили костюм водяного охлаждения, т.к. водяное охлаждение является единственно возможным методом поддержания приемлемых тепловых условий в скафандре при интенсивной работе космонавта. Чтобы отвести 300-500 ккал/ч тепла, расход воды через костюм водяного охлаждения составляло 1,5-2 л/мин, потребная длина охлаждающих трубок была около 100 метров. Для прокачки воды использовался насос с мощностью двигателя в несколько ватт.

Одновременно с водяным охлаждением имелся контур циркуляции и регенерации воздушной среды внутри скафандра и удаления влаги. Также был запас кислорода для компенсации утечек.

Аналог

Это, пожалуй, единственный случай, когда американский аналог известнее нашего. Именно в нем Нил Армстронг ступил в 1969-м на поверхность Луны


Скафандр был изготовлен из высокопрочных синтетических тканей, металла и пластмасс. Под скафандр космонавт надевал легкий цельнокроеный костюм с датчиками для биотелеметрии. Кроме того, под скафандр надевался также специальный костюм водяного охлаждения, который был рассчитан на непрерывную эксплуатацию в течение 115 час. В этом костюме из нейлонового спандекса имелась система полихлорвиниловых трубок общей длиной около 90 м, по которым непрерывно циркулировала холодная вода, поглощавшая выделяемое телом тепло и отводящая его к внешнему холодильнику. Благодаря такому костюму температура кожи на различных участках тела не выходила за пределы 40°С.

На ладони были специальные проволочные стяжки, которые не давали перчатке раздуваться при избыточном давлении в скафандре. Для обеспечения ловкости работы руками на пальцах перчаток имелись удлинения-захваты, с помощью которых космонавт мог поднимать мелкие предметы.

Шлем космонавта сделан из прозрачного поликарбоната и обладал большой ударной прочностью. Его сферическая форма давала космонавту возможность поворачивать голову в любую сторону. Кислород поступал в шлем со скоростью 162 л/мин, а герморазъем на левой стороне шлема позволял космонавту в скафандре пить или принимать пищу. Ранцевая система жизнеобеспечения прикреплялась к спинке скафандра и на Земле весла 56,625 кг (для особо дотошных - 554,925 н).

Орлан

После высадки на Луне все работы по «Кречету» прекратились. Однако в комплект лунной программы входил также скафандр «Орлан» - для орбитальных работ


К его разработке вернулись в 1969-м, когда начались работы по первой орбитальной станции. Именно модификации «Орланов» мы использовали на «Мире» и сейчас используем на МКС.

Всем известно, что экипажи на орбитальных станциях меняются.

Однако существовавшие до этого скафандры были индивидуальными и не обладали возможностью подгонки. Следовательно для каждого нового члена экипажа станции их необходимо было изготавливать и запускать в космос, что было неэффективно при ограниченных грузовых возможностях кораблей «Союз» и «Прогресс». Однако благодаря полужёсткой конструкции в «Орлане» индивидуальными являлись лишь перчатки скафандра, которые доставлялись экипажем, в то время как сами скафандры постоянно находились на станции.

Чтобы обеспечить подвижность тела, в скафандре применили шарниры, расположенные в области основных суставов - плечевых, локтевых, коленных, в области лодыжек, пальцев рук и т. д. Кроме того, в последующих модификациях для повышения подвижности в ряде сочленений использовались герметические подшипники (например, в плечевом или кистевом сочленениях).

С момента первого использования «Орлана» на «Салюте-6» в 1977 до затопления «Мира» в 2001-м на околоземной орбите использовалось 25 комплектов «Орланов» всех разновидностей. Часть из них сгорела вместе с последней станцией «Мир». За это время в «Орланах» совершено 200 выходов 42 экипажами. Общее время работы превысило 800 часов.

У «Орлана» существует множество модификаций. Самая интересная на мой взгляд - «Орлан-ДМА»с установкой для перемещения и маневрирования в открытом космосе.

НПП «Звезда» не озвучивает стоимость «Орлана». Однако в одном и репортажей я когда-то слышал цифру в миллион долларов. Могу ошибаться.

Аналог

Американские астронавты честно и открыто признаются, что их нынешние скафандры гораздо хуже и неудобнее наших. Стоят они при этом 12-15 миллионов. Так что полноценного аналога нынешним «Орланам» не существует.

Стриж

Во время создания «Бурана» создавался новейший спасательный скафандр «Стриж»

Я не до конца уверен, что это именно он на фотографии, но вроде как он. В комплекте к «Стрижу» разрабатывалось катапультное кресло К-36РБ. Специалисты называли «Стриж» лучшим скафандром из существующих когда-либо. Однако с прекращение работ по «Бурану»… в общем как обычно у нас в стране.

«Когда я вырасту, я стану космонавтом» - эта фраза стала символом целой эпохи, которая началась с космической гонки между ведущими странами мира и закончилась несбывшейся мечтой для многих из нас. Однако есть на планете Земля люди, которые регулярно выходят в открытый космос. И если сегодня для нас стало привычным делом, что на орбите всегда есть кто-то, кто парит в невесомости, когда-то это было настолько захватывающим, что миллионы людей не отрывали глаз от телевизоров, с замиранием сердца наблюдая за первыми потугами освоить космос.

К сожалению, мы родились слишком поздно, чтобы исследовать Землю. К счастью, мы станем первым поколением, с которого начнётся освоение других планет. В этой статье мы поговорим об одежде, без которой не состоится ни один межпланетный перелёт, ни один выход разумного человека в космос, - о скафандрах будущего.

Современные скафандры

Открытый космос - крайне враждебная среда. Если вы случайно окажетесь в безвоздушном пространстве, едва ли вас удастся спасти. В течение 15 секунд вы потеряете сознание из-за отсутствия кислорода. Кровь закипит, а после замёрзнет из-за отсутствия давления. Ткани и органы расширятся. Резкий перепад температур довершит начатое. Даже если вам удастся пережить всё это, не факт, что солнечный ветер не наградит вас вредоносным излучением.

Чтобы защититься от всех этих факторов, космонавты используют защитные костюмы - скафандры. История космического гардероба довольно интересная, однако за последние лет 30 в ней произошло не так много важных событий. Гораздо увлекательней то, что ждёт нас в ближайшем будущем, особенно если учесть растущие темпы коммерческих перелётов и принять во внимание запланированные миссии.

Сегодня российские космонавты используют скафандры «Сокол КВ-2» и «Орлан-МК» (для выхода в открытый космос), разработанные в 1970–1980-х годах. В 2014 году планируются испытания «Орлана-МКС», конструкция которого претерпела незначительные изменения - в целом скафандр почти тот же, что и его предшественник. Сегодня и всегда их производством занимается ОАО «НПП „Звезда“ имени академика Г. И. Северина». Китай, кстати, наряжает своих космонавтов (или тайконавтов, если точнее) в костюмы, сделанные на базе советских: тот же «Сокол» и Feitian, представленные в 2003 и 2008 годах соответственно и используемые в миссиях «Шэньчжоу-5» и «Шэнчьжоу-7». США, хоть и заслуживающие уважения за многообещающие разработки, верны скафандрам 1994 и 1984 годов: ACES (AdvancedCrewEscapeUnit) и EMU (ExtravehicularMobilityUnit).

Американцев можно понять. Из-за проблем с финансированием космическая программа была серьёзно урезана. Возможно, если бы не это, они были бы уже на Венере (такая миссия действительно планировалась). Что касается успехов Роскосмоса, то, кроме вышеупомянутых испытаний «Орлана-МКС», ни о чём больше сказать нельзя. Если скафандры будущего в России делают, то делают подпольно.


НАСА планирует вернуться на Луну и активно разрабатывает новые скафандры, поскольку они понадобятся новым армстронгам и олдринам, которые будут оставлять следы на лунном песке. Однако, в отличие от программы «Аполлон-11», новые костюмы должны дать космонавтам больше возможностей. Например, свободное передвижение, которое облегчит работу на Луне, а также защиту от липкой как скотч лунной пыли.

Зато международные партнёры в лице Европейского космического агентства и Роскосмоса планируют пилотируемый полёт на Марс - о чём может свидетельствовать 500-дневный эксперимент, проведённый несколько лет назад. В рамках программы «Марс-500» шестеро членов международного экипажа (в том числе и россияне) провели 500 дней взаперти, имитируя полет на Марс. Возможно, в 2018 году полёт всё же состоится. Тут стоит знать, что основная проблема столь длительного перелета заключается в воздействии радиации, от которой не защищают ни скафандры, ни обшивка корабля. Полёт может оказаться крайне неблагоприятным.

Отметим, что для полета на Марс Роскосмосу совместно с партнёрами придётся разработать специальный скафандр. В рамках программы «Марс-500» члены экипажа использовали специальную версию скафандра «Орлан-Э» (что значит «экспериментальный»). Конструкторы в шутку называют его младшим братом - он практически идентичен остальным «Орланам», но в четыре раза легче и для космической прогулки по Марсу пока не подойдёт. Однако ляжет в основу будущего марсианского костюма.

Также полёт на Марс планируют еще несколько миллиардеров-филантропов - Бас Лансдорп (проект MarsOne, рассчитанный на колонизацию Марса в течение 2011–2033 годов) и Элон Маск (основатель SpaceX).

Сколько стоит скафандр? Модель, используемая НАСА, со всей экипировкой, системой жизнеобеспечения и оборудованием обходится в 12 миллионов долларов. «НПП „Звезда“» предпочитает не афишировать стоимость скафандра, однако поговаривают о 9 миллионах долларов.

Конструкция

Из каких материалов делают скафандры? Давайте разберём на примере EMU. Если первые космические скафандры целиком делали из мягких тканей, современные их варианты сочетают мягкие и жёсткие компоненты, которые обеспечивают поддержку, мобильность и удобство (хотя с последним ещё можно поспорить). Сам материал скафандр делается в 13 слоёв: два слоя внутреннего охлаждения, два сдавливающих слоя, восемь слоёв тепловой защиты от микрометеоритов и один внешний слой. Эти слои включают следующие материалы: трикотажный нейлон, спандекс, уретановый нейлон, дакрон, неопреновый нейлон, майлар, гортекс, кевлар (из которого делают бронежилеты) и номекс.

Все слои сшиты и скреплены вместе, чтобы стать цельным покрытием. Также, в отличие от первых скафандров, которые сшивались индивидуально для каждого космонавта, современные EMU обладают компонентами различных размеров, которые подойдут всем.

Скафандр EMU состоит из таких частей: MAG (собирает мочу космонавта), LCVG (устраняет излишки тепла в процессе прогулки по космосу), EEH (обеспечивает связью и биоинструментами), CCA (микрофон и наушники для связи), LTA (нижняя часть костюма, штаны, наколенники, наголенники и сапоги), HUT (верхняя часть костюма, твёрдая оболочка из стекловолокна, которая поддерживает несколько структур: руки, торс, шлем, рюкзак жизнеобеспечения и модуль управления), рукава, две пары перчаток (внутренние и внешние), шлем, EVA (защита от яркого солнечного света), IDB (внутрикостюмный мешок для питья), PLSS (первичная система жизнеобеспечения: кислород, энергия, уборка углекислого газа, охлаждение, вода, радио и система предупреждения), SOP (запасной кислород), DCM (модуль управления PLSS).


Плохо забытое старое

В 2012 году НАСА представило скафандр нового типа Z-1. Сделанный по образу и подобию скафандра Базза Лайтера из «Истории игрушек», этот костюм должен поступить в производство в 2015 году и будет обладать набором приятных качеств и функций.

Во-первых, шлем в форме пузыря обеспечивает огромное по сравнению с предыдущими вариантами поле зрения. Да, это не канонический «мотоциклетный шлем», но безопасность, по заверениям специалистов, будет на высшем уровне. Новый дизайн плечевых частей костюма предоставляет большую свободу движениям рук. Сзади в скафандре располагается люк, сквозь который пролезает космонавт, когда одевается. То есть скорее это скафандр, словно транспорт, принимает в себя пассажира, а не космонавт надевает на себя всё это.

Во-вторых, и очень важных «во-вторых», скафандр Z-1 будет одинаково пригоден как для выхода в открытый космос, так и для передвижений по поверхности планеты (в отличие от всего того, что носит экипаж МКС).

В-третьих, благодаря новейшим разработкам существенно упала необходимость лишний раз загружать скафандр канистрами с гидроксидом лития, абсорбирующим двуокись углерода, выдыхаемую человеком. Что ж, Z-1 мог бы стать отличной заменой EMU и отправить старый скафандр на пенсию.


В конце прошлого года стало известно, что НАСА испытывает новый облегчённый скафандр, поскольку Z-1 оказался слишком громоздким. Шаг назад? И вот второй: новый костюм станет модифицированной версией оранжевого костюма ACES, разработанного еще в 1960-х. Скафандр будет использоваться командой космического корабля «Орион», который будет ловить астероиды для сбора образцов и анализа. К сожалению, космическое агентство не приоткрывает завесу тайны над этой загадочной миссией, поэтому известно о ней не так много.

Два шага назад? Вот вам третий: челнок «Орион», по сути, является обновленным модулем «Аполлона». И здесь все элементы пазла складываются воедино: внутри ракетного модуля «Орион» слишком мало места, чтобы там можно было развернуться в скафандре типа EMU или Z-1. Кроме того, новый скафандр будет универсальным и предназначенным для работы как внутри, так и снаружи. Сами представители НАСА особенно подчеркивают такие плюсы нового скафандра, как низкая стоимость производства и наличие уже готовой системы жизнеобеспечения космонавта в новом скафандре. Однако есть твёрдая надежда, что Z-1, а вслед за ним и недавно анонсированный Z-2 всё же будут использовать, но в других миссиях.

Оранжевый оттенок был выбран для скафандров ACES из соображений безопасности. Это один из самых ярких цветов как в море, так и в космосе. Найти и спасти заблудшего космонавта было бы проще.


«Вторая кожа»

За время полёта в космосе позвоночник космонавта вытягивается на семь сантиметров. Это приводит к жутким болям в спине, что, конечно же, вызывает беспокойство у космических агентств. Специально для Европейского космического агентства немецкие инженеры разработали плотно прилегающий к телу костюм Skinsuit, который сшит из двунаправленной эластичной ткани из полиуретанового волокна. Костюм плотно сдавливает тело от плеч до стоп, имитируя обычное давление. Летные испытания костюма, сделанного из спандекса, запланированы на 2015 год. Впрочем, некоторые инженеры в своих разработках зашли ещё дальше.

Совсем недавно научный сотрудник лучшего в мире вуза (по версии QS) - Массачусетского технологического института - Дэва Ньюмен представила новый скафандр, над которым работала более десяти лет. Он называется Biosuit и, по мнению многих, может произвести революцию в освоении космоса силами людей.

Облегающий скафандр предоставляет астронавтам большую мобильность и предупреждает травмы («на плечах» астронавтов - 25 операций из-за травм от тяжелых скафандров). Основным мотивом работы Ньюмен было то, что женщины ниже определенного роста не могли использовать EMU, поскольку просто не делают таких маленьких скафандров. Для самой Дэвы это важный факт, поскольку высоким ростом она не отличается. Но есть и другие мотивы.


Во-первых, современные скафандры весят около 100 килограммов. Да, они предназначены для использования в невесомости, но с ними приходится возиться. Во-вторых, пространство само по себе не является пустым. В космосе также есть газ, и для стабилизации давления изнутри и снаружи скафандр «раздувается», ещё больше осложняя движения человека. Biosuit представляет собой плотно стянутую ткань из полимеров и активных материалов - сплава никеля и титана, поэтому самостоятельно оказывает давление на ткань человека, предотвращая её расширение и оставаясь при этом упругим и эластичным.

Также, поскольку этот костюм разделен на автономные секции, в случае прокола одной части у космонавта будет время наложить «повязку». Современные скафандры такого не умеют: треснул значит треснул, разгерметизация происходит по всей ширине предмета одежды. Однако у Дэвы остаются определённые проблемы со шлемом, поэтому сама изобретательница признаёт, что, как ни крути, скорее всего, мы увидим симбиоз EMU и Biosuit. Компромиссным решением было бы оставить нижнюю часть от Biosuit и шлем от EMU. Это обеспечит космонавта нужной мобильностью и проверенной безопасностью шлема. До первых полётов на Марс ещё есть время - и возможность придумать что-то новое.

Поехали?

Что касается начинки скафандров, то учёные серьёзно планируют превратить космонавтов будущего в ходячие лаборатории. Команда учёного Патрика Макгира из Чикаго занимается разработкой портативного компьютера для скафандра, который сможет самостоятельно (или почти самостоятельно - при помощи алгоритмов искусственного интеллекта на основе нейронных сетей) проводить целый ряд анализов: от оценки ландшафта до микроскопической структуры камней. Этот разумный скафандр готовится для полётов на Марс и успешно проходит испытания в полузасушливых районах Испании и отличил лишайник от налёта на камне. В диких условиях какого-нибудь Марса такой помощник может стать бесценным.

Конечно, только костюмами космонавтов современные разработки не ограничиваются. Эпоха космических путешествий объявляется открытой - и кто знает, может быть, именно вы войдёте в число первых космических туристов. В январе успешно прошёл третий и очень впечатляющий тестовый полёт космического корабля Space Ship Two, созданием которого занимается Virgin Galactic и лично Ричард Брэнсон. Похоже на то, что именно «Девственная галактика», по всей видимости, станет первой компанией, предоставляющей шикарную экскурсию на околоземную орбиту, а может, и дальше.

Скафандры для нас с вами тоже готовятся. Американская компания Final Frontier Design представила легкий вариант костюма 3G Space Suit для космических туристов. Удобный, лёгкий (всего семь килограммов - это вам не 100-килограммовый EMU) и недорогой скафандр создавался четыре года на гребне славы предыдущего изобретения компании, сорвавшего престижную награду Popular Science 2013, - особых космических перчаток. Только послушайте, как круто звучит: «Плавленый слой нейлона с уретановым покрытием, 13 уровней под индивидуальный размер, кольцо из углеродного волокна вокруг талии, съёмные перчатки, встроенный коммуникационный разъём, а также охлаждающие контуры в районе груди, рук и ног, защищающие путешественника от перегрева…»

Кажется, запахло космосом. Выбирайте костюм по плечу и приготовьтесь увидеть, как на лунном востоке поднимается слепящий шар - наша с вами Земля.


С момента первого полета в космос всеми узнаваемого Юрия Гагарина появилась новая, особо важная . Данная работа отличается особой спецификой, особой подготовкой и, конечно, особой одеждой. Основная одежда космонавта это скафандр , они бывают нескольких видов в зависимости от предназначения. Есть скафандры для открытого космоса, а есть для нахождения собственно в кабине.

Как и любая одежда, костюм космонавта должен быть удобен как для энергичных движений, так и для отдыха. Костюм подразделяется на несколько слоев:

  1. Нательное белье . В космическом корабле используется белье одноразового типа, после носки комплект просто утилизируется и открывается новый;
  2. Полетный костюм . Это одежда для нахождения в кабине, работы и отдыха, этот слой следует сразу за нательным бельем и тоже может быть одноразовым;
  3. Теплозащитный костюм . Это одежда, используемая в экстренных условиях, если сломается система отопления или же при приземлении в холодных частях нашей планеты.

В настоящее время большинство комплектов одежды космонавта созданы для одноразового использования, для применения обычных костюмов необходимо оборудовать возможность стирки на космическом корабле, а подобные проект еще лишь в работе.

Большой скачок. Скафандр. Эволюция

Белье

Как и любое белье, первый слой костюма современных космонавтов соприкасается непосредственно с кожей, а значит, оно должно быть приятным на ощупь. Лучше всего для исполнения данной функции подходят лен и хлопок. Кроме приятных тактильных ощущений ткань обязательно должна обладать требуемой эластичностью, чтобы не затруднять движения, впитывать влагу и пропускать воздух.

Лучшим вариантом по многочисленным исследованиям явился вязаный хлопок, для повышения прочности добавляется малая часть искусственных волокон. Подобным синтетическим волокном была выбрана вискоза. Этот вариант подтверждён многочисленными опытами, даже спустя десять дней постоянного ношения его под скафандром оно не вызывает на коже раздражения и прекрасно впитывает все выделения кожного покрова, что особенно важно потому что в космическом корабле не предусмотрены качественные гигиенические процедуры.

Последней разработкой данного вида одежды стал вариант антимикробного белья. Оно подходит для длительных полетов, не позволяет развиться раздражениям и успешно впитывает все выделения в течение долгого времени.

Полетный костюм

Второй слой одежды космонавта после белья это полетный костюм, в особо тяжелых условиях его заменяет скафандр. Костюм не должен стеснять движений и быть удобен в носке, также необходимо учесть при его изготовлении все необходимые датчики, которые крепятся на одежду представителя данной профессии. Полетный костюм изготавливается строго для определенного корабля, учитывается влажность, температура и давление в кабине.

Скафандр для выхода на поверхность Луны
и автономная ранцевая система жизнеобеспечения (АРСЖ)

  1. Герметизированный шлем;
  2. Панель управления автономной ранцевой системой жизнеобеспечения;
  3. Входной и выходной разъемы для подсоединения водяных шлангов системы жизнеобеспечения;
  4. Карман для фонаря;
  5. Входной и выходной разъемы для подсоединения кислородных шлангов системы жизнеобеспечения;
  6. Кабели связного оборудования, вентиляционные и водяные шланги системы охлаждения;
  7. Карман для образцов лунного грунта;
  8. Чехлы на ботинках;
  9. Упрочняющий слой металлической ткани для защиты от охлаждения и ударов микрометеоритов;
  10. Прикрытые клапаном разъем для подсоединения мочесборника, отверстие для инъекций, дозиметр и на шнурке пакет с медикаментами;
  11. Перчатки;
  12. Герметизированная оболочка скафандра;
  13. Соединяющиеся части герметизированной оболочки скафандра (отвернутые);
  14. Входной разъем для очищенного кислорода;
  15. Карман для солнцезащитных очков;
  16. Разъем для подсоединения кабеля связного оборудования;
  17. Панель управления системой очистки кислорода;
  18. Автономная ранцевая система жизнеобеспечения;
  19. Система очистки кислорода.

Самый-самый. Скафандр «Орлан-МК»

Автономная ранцевая система жизнеобеспечения (АРСЖ)

  1. Система очистки кислорода;
  2. Блок аварийного запаса кислорода (АЗК). Кислородный баллон высокого давления;
  3. Блок АЗК. Система подачи кислорода низкого давления (для дыхания, вентиляции и поддержания давления наддува в скафандре);
  4. Связное и телеметрическое оборудование;
  5. Блок электрических соединений;
  6. Бачок с водой для системы терморегулирования;
  7. Вентилятор;
  8. Жидкостная система охлаждения астронавта;
  9. Основная система подачи кислорода. Баллон с кислородом;
  10. Разъемы для подзарядки баков с кислородом и водой.

Используемый для изготовления подобного костюма материал должен соответствовать многим критериям, чтобы не усложнять работу космонавта. Основными качествами являются эластичность, износостойкость, жароустойчивость, легкость, пылеотталкивающие свойства. Дизайн самого костюма обычно учитывает предпочтения его обладателя, если изготавливается костюм универсального типа, то модель делают классических спокойных оттенков.

Костюм изготавливается из смеси синтетических и натуральных тканей. Синтетика обладает большей износостойкостью, жароустойчивостью, но синтетика создает вокруг себя статическое электричество, что недопустимо в костюме космонавта, поэтому необходимо разбавить натуральными тканями.

Новый космический скафандр 2017

Теплозащитный костюм

Теплозащитный костюм изготавливается на всякий случай и основная его задача согреть космонавта. Кроме самого костюма представителю данной профессии разрешено использовать шерстяные носки и шапочку. Последний третий слой одежды изготавливается по тем же критериям, эластичность ткани, удобство покроя, смесь натуральных и синтетических волокон. К этому верхнему костюму добавляется устойчивость к условиям окружающей среды. Сам костюм состоит из двух частей это подкладки и верхнего слоя.

Основной материал шерсть, она лучше всего греет и достаточно удобна в носке. Подобные тепловые костюмы различаются степенью защиты от холода на летний, шерстяной, переходный, зимний, арктический, особо арктический. С подобными костюмами в комплекте идут шапочки того же типа. Самая популярная модель шапки это головной убор с козырьком и отворотом. Шапочка делается немного легче костюма и не должна задевать волосы или быть чересчур жаркой. После этого головного убора может быть шлем, он может быть как частью костюма, так и еще одной деталью комплекта теплой одежды. Кроме головы шлем защищает значительную часть груди плеч и спины за счет широкой манишки.На шлем есть возможность прикрепить необходимые для связи датчики.

Последней деталью теплового костюма является обувь. Она изготавливается индивидуально по ноге космонавта, отличается особой легкостью и теплотой. Все три слоя одежды изготовлены для пребывания их носителя в невесомости. Все детали костюмов тщательно крепятся к ним и в тоже время позволяют сделать это максимально быстро. Все материалы для изготовления костюмов проходят множество тестов, проверяя их удобство и безопасность. В космическом корабле не должно ничего создавать неудобство или дополнительные трудности в работе, поэтому костюмы разрабатываются с особо тщательным подходом к данному виду одежды.

Скафандр астронавта. Из чего это сделано.

Скафандр… Космическая одежда… С документальных фотографий (и фантастических фильмов) смотрят на нас сквозь поднятые забрала шлемов одетые в скафандры летчики-космонавты. Страницы научно-фантастических романов показывают нам космонавтов будущего с их непременным реквизитом - скафандром. Какую же роль играет скафандр в космическом полете? Сохранится ли она в будущем? Как изменится?

Современный космический «костюм» имеет одно главное и единственное назначение - он должен оградить человека в полете от опасностей. «Мода» космической одежды, ее «покрой» целиком подчинены этой цели; ее создатели стараются предугадать все возможные в космосе опасности. Скафандр оградит человека от ворвавшейся в ракету космической «пустоты», если случайная авария разгерметизирует корабль. Он снабдит пилота воздухом, если вдруг нельзя станет дышать воздухом кабины. Он может выполнять роль холодильника и обогревательного устройства. Если космонавт покидает возвращающийся на Землю корабль, только скафандр защищает его. Защищает от удара о воздух в момент катапультирования из корабля, от разреженной атмосферы при спуске на парашюте, предохраняет от ушибов, когда приземление совершается в лесу или в горах. А если космонавт опустится на воду, скафандр удержит его на плаву и не даст замерзнуть в ледяной воде.

В грядущих космических полетах работы космонавтам прибавится. Соответственно усложнится и роль скафандра.

Визит на другие планеты потребует особого, планетарного скафандра, позволяющего выходить из космического корабля, совершать более или менее длительные «прогулки» как по раскаленной почве на освещенной стороне Луны, так и по ледяным покровам полярных «шапок» , а, быть может, и по кипящим океанам Венеры.

Развитие космонавтики, по-видимому, потребует, чтобы человек вышел из корабля в открытое межпланетное пространство, например, для сборки орбитальных станций, для осмотра и ремонта космических кораблей. Скафандр, предназначенный для открытого космоса, будет отличаться и от современного и от будущего планетарного. Взять хотя бы способ передвижения. В космическом пространстве можно двигаться только с помощью ракетного двигателя. Значит, скафандр должен будет иметь ракетную двигательную установку. Она может работать, например, на сжатом воздухе.

ЧЕМ ДЫШИТ КОСМОНАВТ

Нормальное дыхание в любой ситуации - одна из самых главных задач, решаемых во время создания скафандра. В зависимости от того, как снабжаются скафандры , их можно разделить на два типа, вентиляционные и регенерационные. Если полет протекает нормально, то воздух и для вентиляции тела и для дыхания забирается из кабины корабля. Вентилятором он нагнетается в вентиляционную систему скафандра, обдувает тело человека и возвращается в кабину. Дышит космонавт воздухом кабины, который свободно поступает в шлем, когда поднято переднее стекло. Но если почему-либо воздух кабины станет непригодным для дыхания, переднее стекло шлема (оно опускается вручную или автоматически) изолирует космонавта от атмосферы кабины, и в скафандр начнет поступать кислородно-воздушная смесь. Одновременно переключается на аварийные баллоны со сжатым воздухом и вентиляция.
Регенерационный скафандр полностью изолирован от окружающей среды. В этом случае газовая смесь, которой дышит человек и которая вентилирует скафандр, прогоняется через химический поглотитель и фильтр. Здесь она освобождается от выделяемых человеком углекислоты, влаги и других примесей. Пополнение кислородом может осуществляться несколькими способами: то ли за счет запасов из баллонов, то ли за счет химической реакции, а в будущем, возможно, и фотохимическим путем.

Примером такой регенерационной системы питания кислородом может служить скафандр американских космонавтов. Запас кислорода, рассчитанный на 28 часов полета, хранится в двух сферических баллонах под давлением, превышающим вначале 560 атмосфер. Через редуктор, который снижает давление до 0,36 атмосферы, кислород подается в вентиляционную систему скафандра и смешивается с газом, выходящим из герметического шлема. Образовавшаяся газовая смесь пропускается через поглотитель углекислоты и влаги, фильтр и теплообменник. Из этого блока очистки выходит уже чистый кислород, охлажденный до 18-24 градусов. Он подается в скафандр через клапан, находящийся на уровне талии космонавта, и по распределительным трубочкам (спиралькам, обшитым нейлоном, в которых проделаны отверстия) идет по скафандру, омывает тело и проникает в герметический шлем. А затем газовая смесь отсасывается из скафандра вентилятором и, снова пополненная кислородом из баллонов, начинает новый цикл кругооборота.

Авиационные скафандры - регенерационный и вентиляционный могут быть выполнены в двух вариантах: масочном и безмасочном. В первом случае, как это понятно из названия, на лицо человека надевается маска, в которую и поступает дыхательная смесь. Во втором случае кислород подается прямо в шлем, лицо человека остается открытым. В чем преимущества и недостатки каждого из этих вариантов?

Маска позволяет создать совершенно независимую систему дыхания, изолированную от вентиляционной системы скафандра. Кроме того, клапанное устройство подает смесь газов только в момент вдоха - значит, кислород расходуется более экономно. Влажный выдыхаемый воздух отводится по трубопроводу сразу на очистку, не попадая в шлем и не ухудшая гигиенических условий вентиляции скафандра. Однако здесь есть и свое «но». Носить маску в продолжение всего полета, особенно длительного, пожалуй, не совсем приятно. Она мешает работать, в ней очень неудобно есть и пить.

Поэтому и первые советские космонавты и американские были одеты во время полетов в скафандры безмасочного типа. Лучше всего, если человек в космическом полете будет дышать нормальным, «земным» воздухом.

ДЕКОМПРЕССИЯ

Космонавты во время полетов дышали воздухом кабины, переднее стекло шлема было поднято и лицо открыто. Никаких неожиданностей не произошло. А что если бы, например, от удара метеорита нарушилась герметичность кабины корабля?

Резкое падение давления воздуха - взрывная декомпрессия - явление, известное в высотной авиации. Взрывная декомпрессия тем страшнее, чем больше неожиданный перепад давлений воздуха. Промежуток времени от момента аварии до потери человеком сознания называется резервом времени. Так, например, опыты, проведенные врачами в годы освоения полетов самолетов на больших высотах, показали, что резкое снижение концентрации кислорода от нормальной атмосферы до соответствующей высоте 10 километров приводит к потере сознания через 40 секунд. Если же разрежение соответствует высоте 15 километров, то резерв снижается до 15 секунд.

При разгерметизации космического корабля падение давления не может произойти мгновенно, оно займет хотя бы несколько секунд. В это время космонавт успеет опустить и загерметизировать переднее стекло шлема, Если же он растеряется, это сделает за него автоматическое устройство.

Но здесь появляется новое осложнение: возникнет перепад давлений внутри и снаружи скафандра. Воздух, заключенный в скафандр, стремясь вырваться из плена, станет раздувать, или, как говорят специалисты, нагружать его силовую оболочку. Два нежелательных следствия сопровождают этот факт. Расскажем о них подробнее.

Всякий материал под действием нагрузки в большей или меньшей степени растягивается. Этим свойством обладает и материал силовой оболочки скафандра. Легко представить, к чему приведет растяжение скафандра. Шлем точно подгоняется по голове, ноги обуты в туго зашнурованные ботинки. Под действием перепада давлений шлем будет стремиться оторваться от скафандра, расстояние между ним и ботинками увеличится, скафандр начнет растягивать космонавта. С какой силой?

Легко подсчитать, что при перепаде давлений в кабине и внутри скафандра, равном, скажем, 0,36 атмосферы, что соответствует американским космическим скафандрам, эта сила достигает 200-300 килограммов. Естественно, что скафандр должен иметь какие-то «силовые» элементы, воспринимающие на себя нагрузку, препятствующие растяжению. У скафандров американских космонавтов есть шнуры, притягивающие шлем к силовой оболочке. Сама оболочка, изготовленная из очень прочной ткани, имеет швы, в которые вшиты упрочняющие ее шнуры.

Второе следствие перепада давлений - ограниченная подвижность человека в скафандре. Здесь имеются в виду не те неудобства, которые вызваны вообще громоздкостью скафандра как одежды. Если бы скафандр не имел специальных приспособлений, то при наличии перепада давлений даже просто согнуть руку очень трудно, а при значительном избыточном давлении в скафандре сделать это и вовсе невозможно. Объясняется это тем, что мягкие его оболочки под действием внутреннего давления стремятся распрямиться. Попробуйте надуть обыкновенную грелку, а потом согнуть ее - она тут же распрямится.

Для того чтобы космонавт мог сравнительно свободно двигаться в своем одеянии, скафандр должен быть снабжен специальными устройствами, например, такими, как шарниры американского космического скафандра, получившие название «апельсиновых корочек». Они представляют собой гофрированные участки рукавов и штанин.

Основную трудность создания шарниров скафандра американские ученые видят в том, что нужно обеспечить продольную жесткость - не дать растянуться «гармошке» сустава. Достигается это хитроумными комбинациями шнуров, скользящих по роликам или заключенных в направляющие оболочки.

ЗЕМНАЯ РОЛЬ КОСМИЧЕСКОГО СКАФАНДРА

Еще совсем недавно существовало мнение, что в космосе царит ужасающий холод, что температура там близка к абсолютному нулю. Однако, по последним данным науки, скорости газовых частиц в межпланетном пространстве настолько велики, что соответствуют температурам в тысячи градусов. Значит ли это, что все живое в космосе неминуемо испепелится?

Нет, плотность межпланетного газа настолько ничтожна, что теплообмен с ним любого тела, попавшего в космос, практически равен нулю. Температура поверхности тела в космическом пространстве определяется, по существу, теплообменом этого тела и Солнца. И если бы не этот теплообмен, то многие тысячи лет пришлось бы ждать, пока температура запущенного с Земли спутника сравняется с температурой частиц в космическом пространстве.

Какую же тогда роль играет теплоизолирующий костюм, входящий в комплект космического скафандра? Назначение его главным образом земное. Сядет космический корабль в холодных районах земного шара - скафандр защитит космонавта от любого мороза. Даже в ледяной воде человек, одетый в космический скафандр, может плавать в течение многих часов, не опасаясь за свое здоровье.

Во время космического полета скафандр с его теплоизолирующим костюмом и вентиляционной системой может обеспечить космонавту комфортабельные температурные условия, независимо от температуры и влажности воздуха в кабине корабля и даже в случае ее разгерметизации.

P. S. О чем еще говорят британские ученые: о том, что интересно узнать, как выглядят свадебные фотокниги у космонавтов. Есть ли там фотографии в скафандрах, а вообще было бы круто провести свадьбу на космическом корабле, с фото в открытом космосе, вы не находите?